939 resultados para Single crystal spectra
Resumo:
The copper(II) complex [Cu(bdoa)(H2O)2] (bdoaH2 = benzene-1,2-dioxyacetic acid) reacts with triphenylphosphine (1:4 mol ratio) to give the colourless copper(I) complex [Cu(η1-bdoaH)(PPh3)3] (1) in good yield. The X-ray crystal structure of the complex shows the copper atom at the centre of a distorted tetrahedron, and is ligated by the phosphorus atoms of the three triphenylphosphines and one carboxylate oxygen atom of the bdoaH− ligand. Significant intermolecular hydrogen-bonding exists between the pendant carboxylate OH function of one molecule and the uncoordinated “ketonic” oxygen of a neighbouring molecule. Complex 1 is non-conducting in chloroform but ionizes readily in acetonitrile. The cyclic voltammogram of an acetonitrile solution of 1 shows a single irreversible anodic peak for the oxidation of the PPh3 ligands and the copper(I) centre, and a single irreversible cathodic peak for the reduction of the bdoaH− ion. IR and mass spectral data for 1 are given.
Resumo:
The IR, the ligand field spectra and the crystal structure of the mixed-ligand compound [(aquo)2,2P1 , a = 8.718(5), b = 9.407(5), c = 13.484 (7) Å, = 94.17(4)°, = 105.12(5)°, = 119.75(5)°, Z = 2, R = 0.0332, R W = 0.0869).
Resumo:
Copper(II) acetate reacts with benzene-1,2-dioxyacetic acid (bdoaH2) in aqueous media to give [Cu(bdoa)(H2O)2] (1). Complex 1 reacts with the N-donor ligands pyridine (py), ammonia and 1,10-phenanthroline (phen) to give [Cu(bdoa)(NH3)2]·H2O (2), [Cu(bdoa)(py)2]·H2O (3) and [Cu2(bdoa)(phen)4]bdoa·13H2O (4), respectively. The X-ray crystal structure of the dicopper(II,II) complex 4 shows each copper atom at the centre of a distorted trigonal bipyramid comprising four nitrogen atoms from two chelating phen ligands and a single oxygen atom from one of the carboxylate moieties of the bridging bdoa2− ligand. The cyclic voltammogram of 4 shows a single reversible wave for the Cu2+/Cu+ couple at E = + 115 mV (vs Ag/AgCl). Spectroscopic and magnetic data for the complexes are given.
Resumo:
The reaction of the fulvalene titanium(III) hydride [{Ti(η5-C5H5)(μ-H)}2(μ-η5-η5-C10H8)] (1) with chlorine leads to [{Ti(η5-C5H5)(μ-Cl)}2(μ-η5-η5-C10H8)] (3) and [{Ti(η5-C5H5)Cl2}2(μ-η5-η5-C10H8)] (4). The reaction of 3 with azobenzene, in wet toluene, gives [{Ti(η5-C5H5)Cl}2(μ-O)(μ-η5-η5-C10H8)] (5) and 1,2-diphenyl hydrazine. The alkylation of 4 and the analogous zirconium complex [{Zr(η5-C5H55)Cl2}2(μ-η5-η5-C10H8)] (2) with LiCH2SiMe3 or LiCH3 permits isolation of the tetraalkyl derivatives [{M(η5-C5H5)(CH2SiMe3)2}2(μ-η5-η5-C10H8)] (M Ti (6); Zr (8)) and [{Ti(η5-C5H5)(CH3)2}2(μ-η5-η5C10H8)] (7). All the new fulvalene compounds were characterized by IR, and 1H and 13C NMR spectroscope, and mass spectra and 5 by X-ray diffraction. The structure of 5 is very similar to that of the comparable TiIV compound [{Ti(η5-C5H5)2Cl}2(μ-O)] except for the smaller TiOTi angle (159.4° against 173.81°) and a significant deviation from linearity.
Resumo:
Studies of the 1H n.m.r. and electronic spectra of a series of alkenylferrocenes including (E) and (Z) stereoisomers of various styrylferrocenes, have provided methods of structure elucidation. Crystals of the title compound are monoclinic, space group P21/c with Z= 4 in a unit cell of dimensions a= 17.603(2), b= 10.218(2), c= 10.072 Å, β= 103.27(2)°. The structure has been determined by the heavy-atom method from diffractometer data and refind by full-matrix least-squares techniques to R= 0.043 for 2 219 unique reflections.
Resumo:
Reactions of [Fe3(CO)12] with diaryltin species SnR2(R1= 2,4,6-triisopropylphenyl, R2= 2,6-diethylphenyl, R3= pentamethylphenyl) and with Sn[CH(PPh2)2]2 have been investigated. The tin reagents SnR2(R = R1 or R2) reacted under mild conditions to give in moderate yields the trinuclear species [Fe2(CO)8(µ-SnR12)]1 or [Fe2(CO)8(µ-SnR22)]2, as orange-red crystalline solids, which decompose in air on prolonged exposure. The compound [Fe2(CO)8(µ-SnR42)]3(R4= 2,4,6-triphenylphenyl) can be similarly obtained. Prolonged treatment of the carbonyl with the novel tin reagent SnR32, by contrast, afforded the known compound spiro-[(OC)8Fe2SnFe2(CO)8]4 for which data are briefly reported. Reactions with tin or lead reagents M[CH(PPh2)2]2(M = Sn or Pb) afforded [Fe2(CO)6(µ-CO)(µ-dppm)][dppm = 1,2-bis(diphenylphosphino)methane] rapidly and almost quantitatively. Full crystal and molecular structural data are reported for [Fe2(CO)8(µ-SnR12)] and [Fe2(CO)8(µ-SnR22)]. Mössbauer data are also presented for compounds 1–3, and interpreted in terms of the structural data for these and other systems.
Resumo:
The single scattering albedo w_0l in atmospheric radiative transfer is the ratio of the scattering coefficient to the extinction coefficient. For cloud water droplets both the scattering and absorption coefficients, thus the single scattering albedo, are functions of wavelength l and droplet size r. This note shows that for water droplets at weakly absorbing wavelengths, the ratio w_0l(r)/w_0l(r0) of two single scattering albedo spectra is a linear function of w_0l(r). The slope and intercept of the linear function are wavelength independent and sum to unity. This relationship allows for a representation of any single scattering albedo spectrum w_0l(r) via one known spectrum w_0l(r0). We provide a simple physical explanation of the discovered relationship. Similar linear relationships were found for the single scattering albedo spectra of non-spherical ice crystals.
Resumo:
Three new trinuclear heterometallic nickel(II)manganese(II) complexes, [(NiL)2Mn(NCS)2] (1), [(NiL)2Mn(NCO)2] (2), and [{NiL(EtOH)}2Mn(NO2)2]center dot 2EtOH (3), have been synthesized by using [NiL] as the so-called ligand complex [where H2L = N,N'-bis(salicylidene)-1,3-propanediamine] and have been structurally characterized. Crystal structure analyses revealed that complexes 1 and 2 are angular trinuclear species, in which two terminal four-coordinate square planar [NiL] moieties are coordinated to a central MnII through double phenoxido bridges. The MnII is in a six-coordinate distorted octahedral environment that is bonded additionally to two mutually cis nitrogen atoms of terminal thiocyanate (in 1) and cyanate (in 2). In complex 3, in addition to the double phenoxo bridge, the two terminal NiII ions are linked to the central MnII by means of a nitrite bridge (1?N:2?O) that, together with a coordinated ethanol molecule, gives rise to an octahedral environment around the NiII ions and consequently the structure becomes linear. Catecholase activity of these three complexes was examined by using 3,5-di-tert-butylcatechol (3,5-DTBC) as the substrate. All three complexes mimic catecholase activity and the rate of catechol oxidation follows saturation kinetics with respect to the substrate and first-order kinetics with respect to the catalyst. The EPR spectra of the complexes exhibit characteristic six line spectra, which indicate the presence of high-spin octahedral MnII species in solution state. The ESI-MS positive spectrum of 1 in the presence of 3,5-DTBC has been recorded to investigate possible complexsubstrate intermediates.
Resumo:
Two pentaaza macrocycles containing pyridine in the backbone, namely 3,6,9,12,18-pentaazabicyclo[12.3.1] octadeca-1(18),14,16-triene ([15]pyN(5)), and 3,6,10,13,19-pentaazabicyclo[13.3.1]nonadeca-1(19),15,17-triene ([16]pyN(5)), were synthesized in good yields. The acid-base behaviour of these compounds was studied by potentiometry at 298.2 K in aqueous solution and ionic strength 0.10 M in KNO3. The protonation sequence of [15]pyN(5) was investigated by H-1 NMR titration that also allowed the determination of protonation constants in D2O. Binding studies of the two ligands with Ca2+, Ni2+, Cu2+, Zn2+, Cd2+, and Pb2+ metal ions were performed under the same experimental conditions. The results showed that all the complexes formed with the 15-membered ligand, particularly those of Cu2+ and especially Ni2+, are thermodynamically more stable than with the larger macrocycle. Cyclic voltammetric data showed that the copper(II) complexes of the two macrocycles exhibited analogous behaviour, with a single quasi-reversible one-electron transfer reduction process assigned to the Cu(II)/Cu(I) couple. The UV-visible-near IR spectroscopic and magnetic moment data of the nickel(II) complexes in solution indicated a tetragonal distorted coordination geometry for the metal centre. X-band EPR spectra of the copper(II) complexes are consistent with distorted square pyramidal geometries. The crystal structure of [Cu([15]pyN(5))](2+) determined by X-ray diffraction showed the copper(II) centre coordinated to all five macrocyclic nitrogen donors in a distorted square pyramidal environment.
Resumo:
Lanthanide(III) complexes with N-donor ex-tractants, which exhibit the potential for the separation of minor actinides from lanthanides in the management of spent nuclear fuel, have been directly synthesized and characterized in both solution and solid states. Crystal structures of the Pr3+, Eu3+, Tb3+, and Yb3+ complexes of 6,6′-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotriazin3-yl)-1,10-phenanthroline(CyMe4-BTPhen) and the Pr3+, Eu3+, and Tb3+ complexes of 2,9-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotria-zin-3-yl)-2,2′-bypyridine (CyMe4-BTBP) were obtained. The majority of these structures displayed coordination of two ofthe tetra-N-donor ligands to each Ln3+ ion, even when in some cases the complexations were performed with equimolar amounts of lanthanide and N-donor ligand. The structures showed that generally the lighter lanthanides had their coordination spheres completed by a bidentate nitrate ion, giving a 2+ charged complex cation, whereas the structures of the heavier lanthanides displayed tricationic complex species with a single water molecule completing their coordination environments. Electronic absorption spectroscopic titrations showed formation of the 1:2 Ln3+/LN4‑donor species (Ln = Pr3+, Eu3+, Tb3+) in methanol when the N-donor ligand was in excess. When the Ln3+ ion was in excess, evidence for formation of a 1:1 Ln3+/LN4‑donor complex species was observed. Luminescent lifetime studies of mixtures of Eu3+ with excess CyMe4-BTBP and CyMe4-BTPhen in methanol indicated that the nitrate-coordinated species is dominant in solution. X-ray absorption spectra of Eu3+ and Tb3+ species, formed by extraction from an acidic aqueous phase into an organic solution consisting of excess N-donor extractant in pure cyclohexanone or 30% tri-n-butyl phosphate (TBP) in cyclohexanone, were obtained. The presence of TBP in the organic phase did not alter lanthanide speciation. Extended X-ray absorption fine structure data from these spectra were fitted using chemical models established by crystallography and solution spectroscopy and showed the dominant lanthanide species in the bulk organic phase was a 1:2 Ln3+/LN‑donor species.
Resumo:
Hydration-dependent DNA deformation has been known since Rosalind Franklin recognised that the relative humidity of the sample had to be maintained to observe a single conformation in DNA fibre diffraction. We now report for the first time the crystal structure, at the atomic level, of a dehydrated form of a DNA duplex and demonstrate the reversible interconversion to the hydrated form at room temperature. This system, containing d(TCGGCGCCGA) in the presence of Λ-[Ru(TAP)2(dppz)]2+ (TAP = 1,4,5,8-tetraazaphenanthrene, dppz = dipyridophenazine), undergoes a partial transition from an A/B hybrid to the A-DNA conformation, at 84-79% relative humidity. This is accompanied by an increase in kink at the central step from 22° to 51°, with a large movement of the terminal bases forming the intercalation site. This transition is reversible on rehydration. Seven datasets, collected from one crystal at room temperature, show the consequences of dehydration at near-atomic resolution. This result highlights that crystals, traditionally thought of as static systems, are still dynamic and therefore can be the subject of further experimentation.
Resumo:
Small changes in DNA sequence can often have major biological effects. Here the rates and yields of guanine photo-oxidation by Λ [Ru(TAP)2(dppz)]2+ have been compared in 5′-{CCGGATCCGG}2 and 5′-{CCGGTACCGG}2 using ps/ns transient visible and time-resolved IR (TRIR) spectroscopy. The inefficiency of electron transfer in the TA sequence is consistent with the 5′-TA-3′ vs. 5′-AT-3′ binding preference predicted by X-ray crystallography. The TRIR spectra also reveal the differences in binding sites in the two oligonucleotides.
Resumo:
Recent work, has produced a wealth of data concerning the chemical evolution of the Galactic bulge, both for stars and nebulae. Present theoretical models generally adopt it limited range of such constraints, frequenfly using it single chemical element (usually iron), which is not enough to describe it unambiguously. In this work, we take into account contraints involving,9 Many chemical elements as possible, basically obtained from bulge nebulae and stars. Our main goal is to show that different scenarios can describe, at least partially the abundance distribution and several dishuice-independent correlations for these objects . Three classes of models were developed. The first is it one-zone, single-infall model, the. Second is it one-zone, double-infall model and the third is a multizone, double-infall model. We show that a one-zone model with it single infall episode is able to reproduce some of the observational data, but the best results tire achieved using it multizone, double-infall model.
Resumo:
We report the first simultaneous zJHK spectroscopy on the archetypical Seyfert 2 galaxy NGC 1068 covering the wavelength region 0.9-2.4 mu m. The slit, aligned in the north-south direction and centred in the optical nucleus, maps a region 300 pc in radius at subarcsec resolution, with a spectral resolving power of 360 km s-1. This configuration allows us to study the physical properties of the nuclear gas including that of the north side of the ionization cone, map the strong excess of continuum emission in the K band and attributed to dust and study the variations, both in flux and profile, in the emission lines. Our results show the following. (1) Mid- to low-ionization emission lines are split into two components, whose relative strengths vary with the position along the slit and seem to be correlated with the jet. (2) The coronal lines are single-peaked and are detected only in the central few hundred of pc from the nucleus. (3) The absorption lines indicate the presence of intermediate age stellar population, which might be a significant contributor to the continuum in the near-IR spectra. (4) Through some simple photoionization models we find photoionization as the main mechanism powering the emitting gas. (5) Calculations using stellar features point to a mass concentration inside the 100-200 pc of about 1010 M(circle dot).
Resumo:
PHENIX has measured the electron-positron pair mass spectrum from 0 to 8 GeV/c(2) in p + p collisions at root s = 200 GeV. The contributions from light meson decays to e(+)e(-) pairs have been determined based on measurements of hadron production cross sections by PHENIX. Within the systematic uncertainty of similar to 20% they account for all e(+)e(-) pairs in the mass region below similar to 1 GeV/c(2). The e(+)e(-) pair yield remaining after subtracting these contributions is dominated by semileptonic decays of charmed hadrons correlated through flavor conservation. Using the spectral shape predicted by PYTHIA, we estimate the charm production cross section to be 544 +/- 39(stat) +/- 142(syst) +/- 200(model) pb. which is consistent with QCD calculations and measurements of single leptons by PHENIX. (C) 2008 Elsevier BV. All rights reserved.