971 resultados para Sequential Monte Carlo methods


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mensalmente são publicados relatórios pelo Departamento de Agricultura dos Estados Unidos (USDA) onde são divulgados dados de condições das safras, oferta e demanda globais, nível dos estoques, que servem como referência para todos os participantes do mercado de commodities agrícolas. Esse mercado apresenta uma volatilidade acentuada no período de divulgação dos relatórios. Um modelo de volatilidade estocástica com saltos é utilizado para a dinâmica de preços de milho e de soja. Não existe um modelo ‘ideal’ para tal fim, cada um dos existentes têm suas vantagens e desvantagens. O modelo escolhido foi o de Oztukel e Wilmott (1998), que é um modelo de volatilidade estocástica empírica, incrementado com saltos determinísticos. Empiricamente foi demonstrado que um modelo de volatilidade estocástica pode ser bem ajustado ao mercado de commodities, e o processo de jump-diffusion pode representar bem os saltos que o mercado apresenta durante a divulgação dos relatórios. As opções de commodities agrícolas que são negociadas em bolsa são do tipo americanas, então alguns métodos disponíveis poderiam ser utilizados para precificar opções seguindo a dinâmica do modelo proposto. Dado que o modelo escolhido é um modelo multi-fatores, então o método apropriado para a precificação é o proposto por Longstaff e Schwartz (2001) chamado de Monte Carlo por mínimos quadrados (LSM). As opções precificadas pelo modelo são utilizadas em uma estratégia de hedge de uma posição física de milho e de soja, e a eficiência dessa estratégia é comparada com estratégias utilizando-se instrumentos disponíveis no mercado.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alavancagem em hedge funds tem preocupado investidores e estudiosos nos últimos anos. Exemplos recentes de estratégias desse tipo se mostraram vantajosos em períodos de pouca incerteza na economia, porém desastrosos em épocas de crise. No campo das finanças quantitativas, tem-se procurado encontrar o nível de alavancagem que otimize o retorno de um investimento dado o risco que se corre. Na literatura, os estudos têm se mostrado mais qualitativos do que quantitativos e pouco se tem usado de métodos computacionais para encontrar uma solução. Uma forma de avaliar se alguma estratégia de alavancagem aufere ganhos superiores do que outra é definir uma função objetivo que relacione risco e retorno para cada estratégia, encontrar as restrições do problema e resolvê-lo numericamente por meio de simulações de Monte Carlo. A presente dissertação adotou esta abordagem para tratar o investimento em uma estratégia long-short em um fundo de investimento de ações em diferentes cenários: diferentes formas de alavancagem, dinâmicas de preço das ações e níveis de correlação entre esses preços. Foram feitas simulações da dinâmica do capital investido em função das mudanças dos preços das ações ao longo do tempo. Considerou-se alguns critérios de garantia de crédito, assim como a possibilidade de compra e venda de ações durante o período de investimento e o perfil de risco do investidor. Finalmente, estudou-se a distribuição do retorno do investimento para diferentes níveis de alavancagem e foi possível quantificar qual desses níveis é mais vantajoso para a estratégia de investimento dadas as restrições de risco.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this paper is to analyze extremal events using Generalized Pareto Distributions (GPD), considering explicitly the uncertainty about the threshold. Current practice empirically determines this quantity and proceeds by estimating the GPD parameters based on data beyond it, discarding all the information available be10w the threshold. We introduce a mixture model that combines a parametric form for the center and a GPD for the tail of the distributions and uses all observations for inference about the unknown parameters from both distributions, the threshold inc1uded. Prior distribution for the parameters are indirectly obtained through experts quantiles elicitation. Posterior inference is available through Markov Chain Monte Carlo (MCMC) methods. Simulations are carried out in order to analyze the performance of our proposed mode1 under a wide range of scenarios. Those scenarios approximate realistic situations found in the literature. We also apply the proposed model to a real dataset, Nasdaq 100, an index of the financiai market that presents many extreme events. Important issues such as predictive analysis and model selection are considered along with possible modeling extensions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When estimating policy parameters, also known as treatment effects, the assignment to treatment mechanism almost always causes endogeneity and thus bias many of these policy parameters estimates. Additionally, heterogeneity in program impacts is more likely to be the norm than the exception for most social programs. In situations where these issues are present, the Marginal Treatment Effect (MTE) parameter estimation makes use of an instrument to avoid assignment bias and simultaneously to account for heterogeneous effects throughout individuals. Although this parameter is point identified in the literature, the assumptions required for identification may be strong. Given that, we use weaker assumptions in order to partially identify the MTE, i.e. to stablish a methodology for MTE bounds estimation, implementing it computationally and showing results from Monte Carlo simulations. The partial identification we perfom requires the MTE to be a monotone function over the propensity score, which is a reasonable assumption on several economics' examples, and the simulation results shows it is possible to get informative even in restricted cases where point identification is lost. Additionally, in situations where estimated bounds are not informative and the traditional point identification is lost, we suggest a more generic method to point estimate MTE using the Moore-Penrose Pseudo-Invese Matrix, achieving better results than traditional methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Differences-in-Differences (DID) is one of the most widely used identification strategies in applied economics. However, how to draw inferences in DID models when there are few treated groups remains an open question. We show that the usual inference methods used in DID models might not perform well when there are few treated groups and errors are heteroskedastic. In particular, we show that when there is variation in the number of observations per group, inference methods designed to work when there are few treated groups tend to (under-) over-reject the null hypothesis when the treated groups are (large) small relative to the control groups. This happens because larger groups tend to have lower variance, generating heteroskedasticity in the group x time aggregate DID model. We provide evidence from Monte Carlo simulations and from placebo DID regressions with the American Community Survey (ACS) and the Current Population Survey (CPS) datasets to show that this problem is relevant even in datasets with large numbers of observations per group. We then derive an alternative inference method that provides accurate hypothesis testing in situations where there are few treated groups (or even just one) and many control groups in the presence of heteroskedasticity. Our method assumes that we can model the heteroskedasticity of a linear combination of the errors. We show that this assumption can be satisfied without imposing strong assumptions on the errors in common DID applications. With many pre-treatment periods, we show that this assumption can be relaxed. Instead, we provide an alternative inference method that relies on strict stationarity and ergodicity of the time series. Finally, we consider two recent alternatives to DID when there are many pre-treatment periods. We extend our inference methods to linear factor models when there are few treated groups. We also derive conditions under which a permutation test for the synthetic control estimator proposed by Abadie et al. (2010) is robust to heteroskedasticity and propose a modification on the test statistic that provided a better heteroskedasticity correction in our simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Differences-in-Differences (DID) is one of the most widely used identification strategies in applied economics. However, how to draw inferences in DID models when there are few treated groups remains an open question. We show that the usual inference methods used in DID models might not perform well when there are few treated groups and errors are heteroskedastic. In particular, we show that when there is variation in the number of observations per group, inference methods designed to work when there are few treated groups tend to (under-) over-reject the null hypothesis when the treated groups are (large) small relative to the control groups. This happens because larger groups tend to have lower variance, generating heteroskedasticity in the group x time aggregate DID model. We provide evidence from Monte Carlo simulations and from placebo DID regressions with the American Community Survey (ACS) and the Current Population Survey (CPS) datasets to show that this problem is relevant even in datasets with large numbers of observations per group. We then derive an alternative inference method that provides accurate hypothesis testing in situations where there are few treated groups (or even just one) and many control groups in the presence of heteroskedasticity. Our method assumes that we know how the heteroskedasticity is generated, which is the case when it is generated by variation in the number of observations per group. With many pre-treatment periods, we show that this assumption can be relaxed. Instead, we provide an alternative application of our method that relies on assumptions about stationarity and convergence of the moments of the time series. Finally, we consider two recent alternatives to DID when there are many pre-treatment groups. We extend our inference method to linear factor models when there are few treated groups. We also propose a permutation test for the synthetic control estimator that provided a better heteroskedasticity correction in our simulations than the test suggested by Abadie et al. (2010).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective of this study is to apply recently developed methods of physical-statistic to time series analysis, particularly in electrical induction s profiles of oil wells data, to study the petrophysical similarity of those wells in a spatial distribution. For this, we used the DFA method in order to know if we can or not use this technique to characterize spatially the fields. After obtain the DFA values for all wells, we applied clustering analysis. To do these tests we used the non-hierarchical method called K-means. Usually based on the Euclidean distance, the K-means consists in dividing the elements of a data matrix N in k groups, so that the similarities among elements belonging to different groups are the smallest possible. In order to test if a dataset generated by the K-means method or randomly generated datasets form spatial patterns, we created the parameter Ω (index of neighborhood). High values of Ω reveals more aggregated data and low values of Ω show scattered data or data without spatial correlation. Thus we concluded that data from the DFA of 54 wells are grouped and can be used to characterize spatial fields. Applying contour level technique we confirm the results obtained by the K-means, confirming that DFA is effective to perform spatial analysis

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUÇÃO: A malaria é uma doença endêmica na região da Amazônia Brasileira, e a detecção de possíveis fatores de risco pode ser de grande interesse às autoridades em saúde pública. O objetivo deste artigo é investigar a associação entre variáveis ambientais e os registros anuais de malária na região amazônica usando métodos bayesianos espaço-temporais. MÉTODOS: Utilizaram-se modelos de regressão espaço-temporais de Poisson para analisar os dados anuais de contagem de casos de malária entre os anos de 1999 a 2008, considerando a presença de alguns fatores como a taxa de desflorestamento. em uma abordagem bayesiana, as inferências foram obtidas por métodos Monte Carlo em cadeias de Markov (MCMC) que simularam amostras para a distribuição conjunta a posteriori de interesse. A discriminação de diferentes modelos também foi discutida. RESULTADOS: O modelo aqui proposto sugeriu que a taxa de desflorestamento, o número de habitants por km² e o índice de desenvolvimento humano (IDH) são importantes para a predição de casos de malária. CONCLUSÕES: É possível concluir que o desenvolvimento humano, o crescimento populacional, o desflorestamento e as alterações ecológicas associadas a estes fatores estão associados ao aumento do risco de malária. Pode-se ainda concluir que o uso de modelos de regressão de Poisson que capturam o efeito temporal e espacial em um enfoque bayesiano é uma boa estratégia para modelar dados de contagem de malária.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ferromagnetic and antiferromagnetic Ising model on a two dimensional inhomogeneous lattice characterized by two exchange constants (J1 and J2) is investigated. The lattice allows, in a continuous manner, the interpolation between the uniforme square (J2 = 0) and triangular (J2 = J1) lattices. By performing Monte Carlo simulation using the sequential Metropolis algorithm, we calculate the magnetization and the magnetic susceptibility on lattices of differents sizes. Applying the finite size scaling method through a data colappse, we obtained the critical temperatures as well as the critical exponents of the model for several values of the parameter α = J2 J1 in the [0, 1] range. The ferromagnetic case shows a linear increasing behavior of the critical temperature Tc for increasing values of α. Inwhich concerns the antiferromagnetic system, we observe a linear (decreasing) behavior of Tc, only for small values of α; in the range [0.6, 1], where frustrations effects are more pronunciated, the critical temperature Tc decays more quickly, possibly in a non-linear way, to the limiting value Tc = 0, cor-responding to the homogeneous fully frustrated antiferromagnetic triangular case.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the critical behavior of the one-dimensional pair contact process (PCP), using the Monte Carlo method for several lattice sizes and three different updating: random, sequential and parallel. We also added a small modification to the model, called Monte Carlo com Ressucitamento" (MCR), which consists of resuscitating one particle when the order parameter goes to zero. This was done because it is difficult to accurately determine the critical point of the model, since the order parameter(particle pair density) rapidly goes to zero using the traditional approach. With the MCR, the order parameter becomes null in a softer way, allowing us to use finite-size scaling to determine the critical point and the critical exponents β, ν and z. Our results are consistent with the ones already found in literature for this model, showing that not only the process of resuscitating one particle does not change the critical behavior of the system, it also makes it easier to determine the critical point and critical exponents of the model. This extension to the Monte Carlo method has already been used in other contact process models, leading us to believe its usefulness to study several others non-equilibrium models

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we have studied, by Monte Carlo computer simulation, several properties that characterize the damage spreading in the Ising model, defined in Bravais lattices (the square and the triangular lattices) and in the Sierpinski Gasket. First, we investigated the antiferromagnetic model in the triangular lattice with uniform magnetic field, by Glauber dynamics; The chaotic-frozen critical frontier that we obtained coincides , within error bars, with the paramegnetic-ferromagnetic frontier of the static transition. Using heat-bath dynamics, we have studied the ferromagnetic model in the Sierpinski Gasket: We have shown that there are two times that characterize the relaxation of the damage: One of them satisfy the generalized scaling theory proposed by Henley (critical exponent z~A/T for low temperatures). On the other hand, the other time does not obey any of the known scaling theories. Finally, we have used methods of time series analysis to study in Glauber dynamics, the damage in the ferromagnetic Ising model on a square lattice. We have obtained a Hurst exponent with value 0.5 in high temperatures and that grows to 1, close to the temperature TD, that separates the chaotic and the frozen phases

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peng was the first to work with the Technical DFA (Detrended Fluctuation Analysis), a tool capable of detecting auto-long-range correlation in time series with non-stationary. In this study, the technique of DFA is used to obtain the Hurst exponent (H) profile of the electric neutron porosity of the 52 oil wells in Namorado Field, located in the Campos Basin -Brazil. The purpose is to know if the Hurst exponent can be used to characterize spatial distribution of wells. Thus, we verify that the wells that have close values of H are spatially close together. In this work we used the method of hierarchical clustering and non-hierarchical clustering method (the k-mean method). Then compare the two methods to see which of the two provides the best result. From this, was the parameter � (index neighborhood) which checks whether a data set generated by the k- average method, or at random, so in fact spatial patterns. High values of � indicate that the data are aggregated, while low values of � indicate that the data are scattered (no spatial correlation). Using the Monte Carlo method showed that combined data show a random distribution of � below the empirical value. So the empirical evidence of H obtained from 52 wells are grouped geographically. By passing the data of standard curves with the results obtained by the k-mean, confirming that it is effective to correlate well in spatial distribution

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)