925 resultados para Search-based algorithms


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper considers a multi-person discrete game with random payoffs. The distribution of the random payoff is unknown to the players and further none of the players know the strategies or the actual moves of other players. A class of absolutely expedient learning algorithms for the game based on a decentralised team of Learning Automata is presented. These algorithms correspond, in some sense, to rational behaviour on the part of the players. All stable stationary points of the algorithm are shown to be Nash equilibria for the game. It is also shown that under some additional constraints on the game, the team will always converge to a Nash equilibrium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Fast reconstruction of interior optical parameter distribution using a new approach called Broyden-based model iterative image reconstruction (BMOBIIR) and adjoint Broyden-based MOBIIR (ABMOBIIR) of a tissue and a tissue mimicking phantom from boundary measurement data in diffuse optical tomography (DOT). Methods: DOT is a nonlinear and ill-posed inverse problem. Newton-based MOBIIR algorithm, which is generally used, requires repeated evaluation of the Jacobian which consumes bulk of the computation time for reconstruction. In this study, we propose a Broyden approach-based accelerated scheme for Jacobian computation and it is combined with conjugate gradient scheme (CGS) for fast reconstruction. The method makes explicit use of secant and adjoint information that can be obtained from forward solution of the diffusion equation. This approach reduces the computational time many fold by approximating the system Jacobian successively through low-rank updates. Results: Simulation studies have been carried out with single as well as multiple inhomogeneities. Algorithms are validated using an experimental study carried out on a pork tissue with fat acting as an inhomogeneity. The results obtained through the proposed BMOBIIR and ABMOBIIR approaches are compared with those of Newton-based MOBIIR algorithm. The mean squared error and execution time are used as metrics for comparing the results of reconstruction. Conclusions: We have shown through experimental and simulation studies that Broyden-based MOBIIR and adjoint Broyden-based methods are capable of reconstructing single as well as multiple inhomogeneities in tissue and a tissue-mimicking phantom. Broyden MOBIIR and adjoint Broyden MOBIIR methods are computationally simple and they result in much faster implementations because they avoid direct evaluation of Jacobian. The image reconstructions have been carried out with different initial values using Newton, Broyden, and adjoint Broyden approaches. These algorithms work well when the initial guess is close to the true solution. However, when initial guess is far away from true solution, Newton-based MOBIIR gives better reconstructed images. The proposed methods are found to be stable with noisy measurement data. (C) 2011 American Association of Physicists in Medicine. DOI: 10.1118/1.3531572]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We develop four algorithms for simulation-based optimization under multiple inequality constraints. Both the cost and the constraint functions are considered to be long-run averages of certain state-dependent single-stage functions. We pose the problem in the simulation optimization framework by using the Lagrange multiplier method. Two of our algorithms estimate only the gradient of the Lagrangian, while the other two estimate both the gradient and the Hessian of it. In the process, we also develop various new estimators for the gradient and Hessian. All our algorithms use two simulations each. Two of these algorithms are based on the smoothed functional (SF) technique, while the other two are based on the simultaneous perturbation stochastic approximation (SPSA) method. We prove the convergence of our algorithms and show numerical experiments on a setting involving an open Jackson network. The Newton-based SF algorithm is seen to show the best overall performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The source localization algorithms in the earlier works, mostly used non-planar arrays. If we consider scenarios like human-computer communication, or human-television communication where the microphones need to be placed on the computer monitor or television front panel, i.e we need to use the planar arrays. The algorithm proposed in 1], is a Linear Closed Form source localization algorithm (LCF algorithm) which is based on Time Difference of Arrivals (TDOAs) that are obtained from the data collected using the microphones. It assumes non-planar arrays. The LCF algorithm is applied to planar arrays in the current work. The relationship between the error in the source location estimate and the perturbation in the TDOAs is derived using first order perturbation analysis and validated using simulations. If the TDOAs are erroneous, both the coefficient matrix and the data matrix used for obtaining source location will be perturbed. So, the Total least squares solution for source localization is proposed in the current work. The sensitivity analysis of the source localization algorithm for planar arrays and non-planar arrays is done by introducing perturbation in the TDOAs and the microphone locations. It is shown that the error in the source location estimate is less when we use planar array instead of the particular non-planar array considered for same perturbation in the TDOAs or microphone location. The location of the reference microphone is proved to be important for getting an accurate source location estimate if we are using the LCF algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper considers the problem of spectrum sensing in cognitive radio networks when the primary user employs Orthogonal Frequency Division Multiplexing (OFDM). We specifically consider the scenario when the channel between the primary and a secondary user is frequency selective. We develop cooperative sequential detection algorithms based on energy detectors. We modify the detectors to mitigate the effects of some common model uncertainties such as timing and frequency offset, IQ-imbalance and uncertainty in noise and transmit power. The performance of the proposed algorithms are studied via simulations. We show that the performance of the energy detector is not affected by the frequency selective channel. We also provide a theoretical analysis for some of our algorithms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new method based on unit continuity metric (UCM) is proposed for optimal unit selection in text-to-speech (TTS) synthesis. UCM employs two features, namely, pitch continuity metric and spectral continuity metric. The methods have been implemented and tested on our test bed called MILE-TTS and it is available as web demo. After verification by a self selection test, the algorithms are evaluated on 8 paragraphs each for Kannada and Tamil by native users of the languages. Mean-opinion-score (MOS) shows that naturalness and comprehension are better with UCM based algorithm than the non-UCM based ones. The naturalness of the TTS output is further enhanced by a new rule based algorithm for pause prediction for Tamil language. The pauses between the words are predicted based on parts-of-speech information obtained from the input text.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computer Vision has seen a resurgence in the parts-based representation for objects over the past few years. The parts are usually annotated beforehand for training. We present an annotation free parts-based representation for the pedestrian using Non-Negative Matrix Factorization (NMF). We show that NMF is able to capture the wide range of pose and clothing of the pedestrians. We use a modified form of NMF i.e. NMF with sparsity constraints on the factored matrices. We also make use of Riemannian distance metric for similarity measurements in NMF space as the basis vectors generated by NMF aren't orthogonal. We show that for 1% drop in accuracy as compared to the Histogram of Oriented Gradients (HOG) representation we can achieve robustness to partial occlusion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wireless mesh networks with multi-beam capability at each node through the use of multi-antenna beamforming are becoming practical and attracting increased research attention. Increased capacity due to spatial reuse and increased transmission range are potential benefits in using multiple directional beams in each node. In this paper, we are interested in low-complexity scheduling algorithms in such multi-beam wireless networks. In particular, we present a scheduling algorithm based on queue length information of the past slots in multi-beam networks, and prove its stability. We present a distributed implementation of this proposed algorithm. Numerical results show that significant improvement in delay performance is achieved using the proposed multi-beam scheduling compared to omni-beam scheduling. In addition, the proposed algorithm is shown to achieve a significant reduction in the signaling overhead compared to a current slot queue length approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genetic algorithms provide an alternative to traditional optimization techniques by using directed random searches to locate optimal solutions in complex landscapes. We introduce the art and science of genetic algorithms and survey current issues in GA theory and practice. We do not present a detailed study, instead, we offer a quick guide into the labyrinth of GA research. First, we draw the analogy between genetic algorithms and the search processes in nature. Then we describe the genetic algorithm that Holland introduced in 1975 and the workings of GAs. After a survey of techniques proposed as improvements to Holland's GA and of some radically different approaches, we survey the advances in GA theory related to modeling, dynamics, and deception

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present robust semi-blind (SB) algorithms for the estimation of beamforming vectors for multiple-input multiple-output wireless communication. The transmitted symbol block is assumed to comprise of a known sequence of training (pilot) symbols followed by information bearing blind (unknown) data symbols. Analytical expressions are derived for the robust SB estimators of the MIMO receive and transmit beamforming vectors. These robust SB estimators employ a preliminary estimate obtained from the pilot symbol sequence and leverage the second-order statistical information from the blind data symbols. We employ the theory of Lagrangian duality to derive the robust estimate of the receive beamforming vector by maximizing an inner product, while constraining the channel estimate to lie in a confidence sphere centered at the initial pilot estimate. Two different schemes are then proposed for computing the robust estimate of the MIMO transmit beamforming vector. Simulation results presented in the end illustrate the superior performance of the robust SB estimators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we are concerned with low-complexity detection in large multiple-input multiple-output (MIMO) systems with tens of transmit/receive antennas. Our new contributions in this paper are two-fold. First, we propose a low-complexity algorithm for large-MIMO detection based on a layered low-complexity local neighborhood search. Second, we obtain a lower bound on the maximum-likelihood (ML) bit error performance using the local neighborhood search. The advantages of the proposed ML lower bound are i) it is easily obtained for MIMO systems with large number of antennas because of the inherent low complexity of the search algorithm, ii) it is tight at moderate-to-high SNRs, and iii) it can be tightened at low SNRs by increasing the number of symbols in the neighborhood definition. Interestingly, the proposed detection algorithm based on the layered local search achieves bit error performances which are quite close to this lower bound for large number of antennas and higher-order QAM. For e. g., in a 32 x 32 V-BLAST MIMO system, the proposed detection algorithm performs close to within 1.7 dB of the proposed ML lower bound at 10(-3) BER for 16-QAM (128 bps/Hz), and close to within 4.5 dB of the bound for 64-QAM (192 bps/Hz).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The impulse response of a typical wireless multipath channel can be modeled as a tapped delay line filter whose non-zero components are sparse relative to the channel delay spread. In this paper, a novel method of estimating such sparse multipath fading channels for OFDM systems is explored. In particular, Sparse Bayesian Learning (SBL) techniques are applied to jointly estimate the sparse channel and its second order statistics, and a new Bayesian Cramer-Rao bound is derived for the SBL algorithm. Further, in the context of OFDM channel estimation, an enhancement to the SBL algorithm is proposed, which uses an Expectation Maximization (EM) framework to jointly estimate the sparse channel, unknown data symbols and the second order statistics of the channel. The EM-SBL algorithm is able to recover the support as well as the channel taps more efficiently, and/or using fewer pilot symbols, than the SBL algorithm. To further improve the performance of the EM-SBL, a threshold-based pruning of the estimated second order statistics that are input to the algorithm is proposed, and its mean square error and symbol error rate performance is illustrated through Monte-Carlo simulations. Thus, the algorithms proposed in this paper are capable of obtaining efficient sparse channel estimates even in the presence of a small number of pilots.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Unmanned aerial vehicles (UAVs) have the potential to carry resources in support of search and prosecute operations. Often to completely prosecute a target, UAVs may have to simultaneously attack the target with various resources with different capacities. However, the UAVs are capable of carrying only limited resources in small quantities, hence, a group of UAVs (coalition) needs to be assigned that satisfies the target resource requirement. The assigned coalition must be such that it minimizes the target prosecution delay and the size of the coalition. The problem of forming coalitions is computationally intensive due to the combinatorial nature of the problem, but for real-time applications computationally cheap solutions are required. In this paper, we propose decentralized sub-optimal (polynomial time) and decentralized optimal coalition formation algorithms that generate coalitions for a single target with low computational complexity. We compare the performance of the proposed algorithms to that of a global optimal solution for which we need to solve a centralized combinatorial optimization problem. This problem is computationally intensive because the solution has to (a) provide a coalition for each target, (b) design a sequence in which targets need to be prosecuted, and (c) take into account reduction of UAV resources with usage. To solve this problem we use the Particle Swarm Optimization (PSO) technique. Through simulations, we study the performance of the proposed algorithms in terms of mission performance, complexity of the algorithms and the time taken to form the coalition. The simulation results show that the solution provided by the proposed algorithms is close to the global optimal solution and requires far less computational resources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genetic Algorithms are robust search and optimization techniques. A Genetic Algorithm based approach for determining the optimal input distributions for generating random test vectors is proposed in the paper. A cost function based on the COP testability measure for determining the efficacy of the input distributions is discussed, A brief overview of Genetic Algorithms (GAs) and the specific details of our implementation are described. Experimental results based on ISCAS-85 benchmark circuits are presented. The performance pf our GA-based approach is compared with previous results. While the GA generates more efficient input distributions than the previous methods which are based on gradient descent search, the overheads of the GA in computing the input distributions are larger. To account for the relatively quick convergence of the gradient descent methods, we analyze the landscape of the COP-based cost function. We prove that the cost function is unimodal in the search space. This feature makes the cost function amenable to optimization by gradient-descent techniques as compared to random search methods such as Genetic Algorithms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interest in low bit rate video coding has increased considerably. Despite rapid progress in storage density and digital communication system performance, demand for data-transmission bandwidth and storage capacity continue to exceed the capabilities of available technologies. The growth of data-intensive digital audio, video applications and the increased use of bandwidth-limited media such as video conferencing and full motion video have not only sustained the need for efficient ways to encode analog signals, but made signal compression central to digital communication and data-storage technology. In this paper we explore techniques for compression of image sequences in a manner that optimizes the results for the human receiver. We propose a new motion estimator using two novel block match algorithms which are based on human perception. Simulations with image sequences have shown an improved bit rate while maintaining ''image quality'' when compared to conventional motion estimation techniques using the MAD block match criteria.