919 resultados para SUBCUTANEOUS CONNECTIVE-TISSUE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently, well-established clinical therapeutic approaches for bone reconstruction are restricted to the transplantation of autografts and allografts, and the implantation of metal devices or ceramic-based implants to assist bone regeneration. Bone grafts possess osteoconductive and osteoinductive properties, however they are limited in access and availability and associated with donor site morbidity, haemorrhage, risk of infection, insufficient transplant integration, graft devitalisation, and subsequent resorption resulting in decreased mechanical stability. As a result, recent research focuses on the development of alternative therapeutic concepts. The field of tissue engineering has emerged as an important approach to bone regeneration. However, bench to bedside translations are still infrequent as the process towards approval by regulatory bodies is protracted and costly, requiring both comprehensive in vitro and in vivo studies. The subsequent gap between research and clinical translation, hence commercialization, is referred to as the ‘Valley of Death’ and describes a large number of projects and/or ventures that are ceased due to a lack of funding during the transition from product/technology development to regulatory approval and subsequently commercialization. One of the greatest difficulties in bridging the Valley of Death is to develop good manufacturing processes (GMP) and scalable designs and to apply these in pre-clinical studies. In this article, we describe part of the rationale and road map of how our multidisciplinary research team has approached the first steps to translate orthopaedic bone engineering from bench to bedside byestablishing a pre-clinical ovine critical-sized tibial segmental bone defect model and discuss our preliminary data relating to this decisive step.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Development of an effective preservation strategy to fulfill off-the-shelf availability of tissue-engineered constructs (TECs) is demanded for realizing their clinical potential. In this study, the feasibility of vitrification, ice-free cryopreservation, for precultured ready-to-use TECs was evaluated. To prepare the TECs, bone marrow-derived porcine mesenchymal stromal cells (MSCs) were seeded in polycaprolactone-gelatin nanofibrous scaffolds and cultured for 3 weeks before vitrification treatment. The vitrification strategy developed, which involved exposure of the TECs to low concentrations of cryoprotectants followed by a vitrification solution and sterile packaging in a pouch with its subsequent immersion directly into liquid nitrogen, was accomplished within 11min. Stepwise removal of cryoprotectants, after warming in a 38 degrees C water bath, enabled rapid restoration of the TECs. Vitrification did not impair microstructure of the scaffold or cell viability. No significant differences were found between the vitrified and control TECs in cellular metabolic activity and proliferation on matched days and in the trends during 5 weeks of continuous culture postvitrification. Osteogenic differentiation ability in vitrified and control groups was similar. In conclusion, we have developed a time- and cost-efficient cryopreservation method that maintains integrity of the TECs while preserving MSCs viability and metabolic activity, and their ability to differentiate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Articular cartilage damage is a persistent and increasing problem with the aging population, and treatments to achieve biological repair or restoration remain a challenge. Cartilage tissue engineering approaches have been investigated for over 20 years, but have yet to achieve the consistency and effectiveness for widespread clinical use. One of the potential reasons for this is that the engineered tissues do not have or establish the normal zonal organization of cells and extracellular matrix that appears critical for normal tissue function. A number of approaches are being taken currently to engineer tissue that more closely mimics the organization of native articular cartilage. This review focuses on the zonal organization of native articular cartilage, strategies being used to develop such organization, the reorganization that occurs after culture or implantation, and future prospects for the tissue engineering of articular cartilage with biomimetic zones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Browse > Journals> Automation Science and Enginee ...> Volume: 5 Issue: 3 Microassembly Fabrication of Tissue Engineering Scaffolds With Customized Design 4468741 abstract Han Zhang; Burdet, E.; Poo, A.N.; Hutmacher, D.W.; GE Global Res. Center Ltd., Shanghai This paper appears in: Automation Science and Engineering, IEEE Transactions on Issue Date: July 2008 Volume: 5 Issue:3 On page(s): 446 - 456 ISSN: 1545-5955 Digital Object Identifier: 10.1109/TASE.2008.917011 Date of Current Version: 02 July 2008 Sponsored by: IEEE Robotics and Automation Society Abstract This paper presents a novel technique to fabricate scaffold/cell constructs for tissue engineering by robotic assembly of microscopic building blocks (of volume 0.5$,times,$0.5$,times,$0.2 ${hbox{mm}}^{3}$ and 60 $mu {hbox{m}}$ thickness). In this way, it becomes possible to build scaffolds with freedom in the design of architecture, surface morphology, and chemistry. Biocompatible microparts with complex 3-D shapes were first designed and mass produced using MEMS techniques. Semi-automatic assembly was then realized using a robotic workstation with four degrees of freedom integrating a dedicated microgripper and two optical microscopes. Coarse movement of the gripper is determined by pattern matching in the microscopes images, while the operator controls fine positioning and accurate insertion of the microparts. Successful microassembly was demonstrated using SU-8 and acrylic resin microparts. Taking advantage of parts distortion and adhesion forces, which dominate at micro-level, the parts cleave together after assembly. In contrast to many current scaffold fabrication techniques, no heat, pressure, electrical effect, or toxic chemical reaction is involved, a critical condition for creating scaffolds with biological agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advances in tissue engineering have traditionally led to the design of scaffold- or matrix-based culture systems that better reflect the biological, physical and biochemical environment of the natural extracellular matrix. Although their clinical applications in regenerative medicine tend to receive most of the attention, it is obvious that other areas of biomedical research could be well served by the powerful tools that have already been developed in tissue engineering. In this article, we review the recent literature to demonstrate how tissue engineering platforms can enhance in vitro and in vivo models of tumorigenesis and thus hold great promise to contribute to future cancer research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell-sheet techniques have been proven effective in various soft tissue engineering applications. In this experiment, we investigated the feasibility of bone tissue engineering using a hybrid of mesenchymal stem cell (MSC) sheets and PLGA meshes. Porcine MSCs were cultured to a thin layer of cell sheets via osteogenic induction. Tube-like long bones were constructed by wrapping the cell sheet on to PLGA meshes resulting in constructs which could be cultured in spinner flasks, prior to implantation in nude rats. Our results showed that the sheets were composed of viable cells and dense matrix with a thickness of about 80–120 mm, mineral deposition was also observed in the sheet. In vitro cultures demonstrated calcified cartilage-like tissue formation and most PLGA meshes were absorbed during the 8-week culture period. In vivo experiments revealed that dense mineralized tissue was formed in subcutaneous sites and the 8- week plants shared similar micro-CT characteristics with native bone. The neo tissue demonstrated histological markers for both bone and cartilage, indicating that the bone formation pathway in constructs was akin to endochondral ossification, with the residues of PLGA having an effect on the neo tissue organization and formation. These results indicate that cell-sheet approaches in combination with custom-shaped scaffolds have potential in producing bone tissue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract: This paper details an in-vitro study using human adipose tissue-derived precursor/stem cells (ADSCs) in three-dimensional (3D) tissue culture systems. ADSCs from 3 donors were seeded onto NaOH-treated medical grade polycaprolactone-tricalcium phosphate (mPCL-TCP) scaffolds with two different matrix components; fibrin glue and lyophilized collagen. ADSCs within these scaffolds were then induced to differentiate along the osteogenic lineage for a 28-day period and various assays and imaging techniques were performed at Day 1, 7, 14, 21 and 28 to assess and compare the ADSC’s adhesion, viability, proliferation, metabolism and differentiation along the osteogenic lineage when cultured in the different scaffold/matrix systems. The ADSC cells were proliferative in both collagen and fibrin mPCL-TCP scaffold systems with a consistently higher cell number (by comparing DNA amounts) in the induced group over the non-induced groups for both scaffold systems. In response to osteogenic induction, these ADSCs expressed elevated osteocalcin, alkaline phosphatase and osteonectin levels. Cells were able to proliferate within the pores of the scaffolds and form dense cellular networks after 28 days of culture and induction. The successful cultivation of osteogenic by FDM process manufactured ADSCs within a 3D matrix comprising fibrin glue or collagen, immobilized within a robust synthetic scaffold is a promising technique which should enhance their potential usage in the regenerative medicine arena, such as bone tissue engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Despite being the leading cause of death and disability in the paediatric population, traumatic brain injury (TBI) in this group is largely understudied. Clinical practice within the paediatric intensive care unit (PICU) has been based upon adult guidelines however children are significantly different in terms of mechanism, pathophysiology and consequence of injury. Aim To review TBI management in the PICU and gain insight into potential management strategies. Method To conduct this review, a literature search was conducted using MEDLINE, PUBMED and The Cochrane Library using the following key words; traumatic brain injury; paediatric; hypothermia. There were no date restrictions applied to ensure that past studies, whose principles remain current were not excluded. Results Three areas were identified from the literature search and will be discussed against current acknowledged treatment strategies: Prophylactic hypothermia, brain tissue oxygen tension monitoring and decompressive craniectomy. Conclusion Previous literature has failed to fully address paediatric specific management protocols and we therefore have little evidence-based guidance. This review has shown that there is an emerging and ongoing trend towards paediatric specific TBI research in particular the area of moderate prophylactic hypothermia (MPH).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High renewal and maintenance of multipotency of human adult stem cells (hSCs), are a prerequisite for experimental analysis as well as for potential clinical usages. The most widely used strategy for hSC culture and proliferation is using serum. However, serum is poorly defined and has a considerable degree of inter-batch variation, which makes it difficult for large-scale mesenchymal stem cells (MSCs) expansion in homogeneous culture conditions. Moreover, it is often observed that cells grown in serum-containing media spontaneously differentiate into unknown and/or undesired phenotypes. Another way of maintaining hSC development is using cytokines and/or tissue-specific growth factors; this is a very expensive approach and can lead to early unwanted differentiation. In order to circumvent these issues, we investigated the role of sphingosine-1-phosphate (S1P), in the growth and multipotency maintenance of human bone marrow and adipose tissue-derived MSCs. We show that S1P induces growth, and in combination with reduced serum, or with the growth factors FGF and platelet-derived growth factor-AB, S1P has an enhancing effect on growth. We also show that the MSCs cultured in S1P-supplemented media are able to maintain their differentiation potential for at least as long as that for cells grown in the usual serum-containing media. This is shown by the ability of cells grown in S1P-containing media to be able to undergo osteogenic as well as adipogenic differentiation. This is of interest, since S1P is a relatively inexpensive natural product, which can be obtained in homogeneous high-purity batches: this will minimize costs and potentially reduce the unwanted side effects observed with serum. Taken together, S1P is able to induce proliferation while maintaining the multipotency of different human stem cells, suggesting a potential for S1P in developing serum-free or serum-reduced defined medium for adult stem cell cultures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an automated system for 3D assembly of tissue engineering (TE) scaffolds made from biocompatible microscopic building blocks with relatively large fabrication error. It focuses on the pin-into-hole force control developed for this demanding microassembly task. A beam-like gripper with integrated force sensing at a 3 mN resolution with a 500 mN measuring range is designed, and is used to implement an admittance force-controlled insertion using commercial precision stages. Visual-based alignment followed by an insertion is complemented by a haptic exploration strategy using force and position information. The system demonstrates fully automated construction of TE scaffolds with 50 microparts whose dimension error is larger than 5%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the formal recognition of practice-led research in the 1990s, many higher research degree candidates in art, design and media have submitted creative works along with an accompanying written document or ‘exegesis’ for examination. Various models for the exegesis have been proposed in university guidelines and academic texts during the past decade, and students and supervisors have experimented with its contents and structure. With a substantial number of exegeses submitted and archived, it has now become possible to move beyond proposition to empirical analysis. In this article we present the findings of a content analysis of a large, local sample of submitted exegeses. We identify the emergence of a persistent pattern in the types of content included as well as overall structure. Besides an introduction and conclusion, this pattern includes three main parts, which can be summarized as situating concepts (conceptual definitions and theories); precedents of practice (traditions and exemplars in the field); and researcher’s creative practice (the creative process, the artifacts produced and their value as research). We argue that this model combines earlier approaches to the exegesis, which oscillated between academic objectivity, by providing a contextual framework for the practice, and personal reflexivity, by providing commentary on the creative practice. But this model is more than simply a hybrid: it provides a dual orientation, which allows the researcher to both situate their creative practice within a trajectory of research and do justice to its personally invested poetics. By performing the important function of connecting the practice and creative work to a wider emergent field, the model helps to support claims for a research contribution to the field. We call it a connective model of exegesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recombinant glucagon-like peptide-1 (7–36)amide (rGLP-1) was recently shown to cause significant weight loss in type 2 diabetics when administered for 6 weeks as a continuous subcutaneous infusion. The mechanisms responsible for the weight loss are not clarified. In the present study, rGLP-1 was given for 5d by prandial subcutaneous injections (PSI) (76nmol 30min before meals, four times daily; a total of 302·4nmol/24h) or by continuous subcutaneous infusion (CSI) (12·7nmol/h; a total of 304·8nmol/24h). This was performed in nineteen healthy obese subjects (mean age 44·2 (sem 2·5) years; BMI 39·0 (sem 1·2)kg/m2) in a prospective randomised, double-blind, placebo-controlled, cross-over study. Compared with the placebo, rGLP-1 administered as PSI and by CSI generated a 15% reduction in mean food intake per meal (P=0·02) after 5d treatment. A weight loss of 0·55 (sem 0·2) kg (P<0·05) was registered after 5d with PSI of rGLP-1. Gastric emptying rate was reduced during both PSI (P<0·001) and CSI (P<0·05) treatment, but more rapidly and to a greater extent with PSI of rGLP-1. To conclude, a 5d treatment of rGLP-1 at high doses by PSI, but not CSI, promptly slowed gastric emptying as a probable mechanism of action of increased satiety, decreased hunger and, hence, reduced food intake with an ensuing weight loss.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scientific discoveries, developments in medicine and health issues are the constant focus of media attention and the principles surrounding the creation of so called ‘saviour siblings’ are of no exception. The development in the field of reproductive techniques has provided the ability to genetically analyse embryos created in the laboratory to enable parents to implant selected embryos to create a tissue-matched child who may be able to cure an existing sick child. The research undertaken in this thesis examines the regulatory frameworks overseeing the delivery of assisted reproductive technologies (ART) in Australia and the United Kingdom and considers how those frameworks impact on the accessibility of in vitro fertilisation (IVF) procedures for the creation of ‘saviour siblings’. In some jurisdictions, the accessibility of such techniques is limited by statutory requirements. The limitations and restrictions imposed by the state in relation to the technology are analysed in order to establish whether such restrictions are justified. The analysis is conducted on the basis of a harm framework. The framework seeks to establish whether those affected by the use of the technology (including the child who will be created) are harmed. In order to undertake such evaluation, the concept of harm is considered under the scope of John Stuart Mill’s liberal theory and the Harm Principle is used as a normative tool to judge whether the level of harm that may result, justifies state intervention or restriction with the reproductive decision-making of parents in this context. The harm analysis conducted in this thesis seeks to determine an appropriate regulatory response in relation to the use of pre-implantation tissue-typing for the creation of ‘saviour siblings’. The proposals outlined in the last part of this thesis seek to address the concern that harm may result from the practice of pre-implantation tissue-typing. The current regulatory frameworks in place are also analysed on the basis of the harm framework established in this thesis. The material referred to in this thesis reflects the law and policy in place in Australia and the UK at the time the thesis was submitted for examination (December 2009).