980 resultados para Role of managers
Resumo:
BACKGROUND Spain shows the highest bladder cancer incidence rates in men among European countries. The most important risk factors are tobacco smoking and occupational exposure to a range of different chemical substances, such as aromatic amines. METHODS This paper describes the municipal distribution of bladder cancer mortality and attempts to "adjust" this spatial pattern for the prevalence of smokers, using the autoregressive spatial model proposed by Besag, York and Molliè, with relative risk of lung cancer mortality as a surrogate. RESULTS It has been possible to compile and ascertain the posterior distribution of relative risk for bladder cancer adjusted for lung cancer mortality, on the basis of a single Bayesian spatial model covering all of Spain's 8077 towns. Maps were plotted depicting smoothed relative risk (RR) estimates, and the distribution of the posterior probability of RR>1 by sex. Towns that registered the highest relative risks for both sexes were mostly located in the Provinces of Cadiz, Seville, Huelva, Barcelona and Almería. The highest-risk area in Barcelona Province corresponded to very specific municipal areas in the Bages district, e.g., Suría, Sallent, Balsareny, Manresa and Cardona. CONCLUSION Mining/industrial pollution and the risk entailed in certain occupational exposures could in part be dictating the pattern of municipal bladder cancer mortality in Spain. Population exposure to arsenic is a matter that calls for attention. It would be of great interest if the relationship between the chemical quality of drinking water and the frequency of bladder cancer could be studied.
Resumo:
Résumé : La voie de signalisation Notch est essentielle pour la différentiation de l'épiderme lors du développement embryonnaire de la peau. Il a été démontré que l'inactivation de Notch1 dans la peau de souris conduit à une hyperplasie de l'épiderme ainsi qu'à la formation subséquente de carcinomes basocellulaires ainsi que de plaques cornéennes. L'inactivation de Notch1 dans la cornée combinée à des lésions mécaniques démontre que les cellules progénitrices de la cornée se différentient en un épithélium hyperplasique et kératinisé comme la peau. Ce changement de destinée cellulaire conduit à une cécité cornéenne et implique des processus non-autonomes aux cellules épithéliales, caractérisés par la sécrétion de FGF-2 par l'épithélium Notch1-/- suivi d'une vascularisation et d'un remaniement du stroma sous-jacent. La déficience en vitamine A est connu comme cause de lésions cornéennes humaines (xérophtalmie sévère). En accord, nous avons trouvé que la signalisation Notch1 était liée au métabolisme de la vitamine A par la régulation de l'expression de CRBP1, nécessaire pour générer un pool de rétinol intracellulaire. La perte de Notch1 dans l'épiderme, l'autre récepteur de la famille présent dans la peau marine, ne conduit pas à un phénotype manifeste. Cependant, l'inactivation dans l'épiderme de Notch1 et Notch2 ensemble, ou de RBP-J, induit une dermatite atopique (DA) sévère chez les souris. De même, les patients souffrants de DA mais pas ceux souffrant de psoriasis ou de lichen plan, ont une réduction marquée de l'expression des récepteurs Notch dans la peau. La perte de Notch dans les keratinocytes conduit à une activation de la voie NF-κB, ce qui ensuite induit la production de TSLP, une cytokine profondément impliquée dans la pathogenèse de la DA. Nous démontrons génétiquement que TSLP est responsable de la DA ainsi que du développent d'un syndrome myéloprolifératif non-autonome aux cellules induit par le G-CSF. Cependant, ces souris avec une inactivation dans l'épiderme de Notch1 et Notch2 et aussi incapables de répondre au TSLP développent des tumeurs invasive sévères caractérisées par une haute activité de signalisation ß-catenin. TSLPR est identifié comme un potentiel suppresseur de tumeur non-autonome aux cellules tumorales; la transplantation de cellules hématopoïétiques TSLPR-/- dans des souris déficientes pour Notch est suffisant pour causer des tumeurs. Summary : The Notch pathway is essential for proper epidermal differentiation during embryonic skin development. It has previously been demonstrated that Notch1 inactivation in marine skin results in epidermal hyperplasia and subsequent formation of basal cell carcinoma-like (BCC-like) tumors as well as corneal plaques. Inducible ablation of Notch1 in the cornea combined with mechanical wounding show that Notch1 deficient corneal progenitor cells differentiate into a hyperplasic, keratinized, skin-like epithelium. This cell fate switch leads to corneal blindness and involves cell non-autonomous processes, characterized by secretion of FGF-2 through Notch1-/- epithelium followed by vascularisation and remodelling of the underlying stroma. Vitamin A deficiency is known to induce a similar corneal defect in humans (severe xerophthalmia). Accordingly, we found that Notch1 signaling is linked to vitamin A metabolism by regulating the expression of CRBP1, required to generate a pool of intracellular retinol. Epidermal loss of Notch2, the other Notch receptor present in marine skin, doesn't lead to any overt phenotypes. However, postnatal epidermis-specific inactivation of both Notch1 and Notch2, or of RBP-J, induces the development of a severe form of atopic dermatitis (AD) in mice. Likewise, patients suffering from AD, but not psoriasis or lichen planas, have a marked reduction of Notch receptor expression in the skin. Loss of Notch in keratinocytes leads to an activation of NF-κB signaling which in turn induces the production of Thymic stromal lymphopoietin (TSLP), a cytokine deeply implicated in the pathogenesis of AD. We genetically demonstrate that TSLP is responsible for AD as well as the development of a cell non-autonomous G-CSF induced myeloproliferative disorder (MPD) in mice. However, these mice with conditional epidermal inactivation of Notch1 and Notch2 as well as incapable to respond to TSLP develop severe invasive tumors characterized by high ß-catenin signaling activity. TSLPR is identified as a potential cell non-autonomous tumor suppressor; transplantation of TSLPR-/- hematopoietic cells into epidermal Notch deficient mice is sufficient to cause tumors.
Resumo:
Arenaviruses are enveloped RNA viruses with a nonlytic life cycle that cause acute and persistent infections. Here, we investigated the role of the host cell's unfolded protein response (UPR) in infection of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV). In mammalian cells, the endoplasmic reticulum (ER) chaperone protein GRP78/BiP functions as the principal sensor for the induction of the UPR and interacts with three mediators: kinase/endonuclease inositol-requiring protein 1 (IRE1), PKR-like ER kinase (PERK), and activating transcription factor 6 (ATF6). Acute infection with LCMV resulted in a selective induction of the ATF6-regulated branch of the UPR, whereas pathways controlled by PERK and IRE1 were neither activated nor blocked. Expression of individual LCMV proteins revealed that the viral glycoprotein precursor (GPC), but not that of other viral proteins, was responsible for the induction of ATF6. Rapid downregulation of the viral GPC during transition from acute to persistent LCMV infection restored basal levels of UPR signaling. To address a possible role of ATF6 signaling in LCMV infection, we used cells deficient in site 2 protease (S2P), a metalloprotease required for the activation of ATF6. Cells deficient in S2P showed significantly lower levels of production of infectious virus during acute but not persistent infection, indicating a requirement for ATF6-mediated signaling for optimal virus multiplication. In summary, acute LCMV infection seems to selectively induce the ATF6-regulated branch of the UPR that is likely beneficial for virus replication and cell viability, but it avoids induction of PERK and IRE1, whose activation may be detrimental for virus and the host cell.
Resumo:
This paper examines recent developments in migration studies. It reviews literature related to the potential role of internal population movement in the occurrence of schistosomiasis in Brazil and modifies Prothero's typology of population movement for use in Brazil. This modified classification system may contribute to a better understanding of schistosome transmission as well as improved research and control programs. The results of this study indicate that population movement in Brazil primarily involves economically-motivated rural-urban and interregional movement. However, several movement patterns have become increasingly important in recent years as a result of changing socioeconomic and urbanisation dynamics. These patterns include urban-urban, intracity and urban-rural movement as well as the movement of environmental refugees and tourists. Little is known about the epidemiological significance of these patterns. This paper also highlights the role of social networks in the decision to migrate and to settle. Prothero's classic population movement typology categorises movement as either one-way migrations or circulations and examines them along spatial and temporal scales. However, the typology must be modified as epidemiological information about new patterns becomes available. This paper identifies areas that require further research and offers recommendations that can improve the measurement and spatial analysis of the relationship between population movement and schistosomiasis.
Resumo:
In autoimmune type 1 diabetes mellitus, proinflammatory cytokine-mediated apoptosis of beta-cells has been considered to be the first event directly responsible for beta-cell mass reduction. In the Bio-Breeding (BB) rat, an in vivo model used in the study of autoimmune diabetes, beta-cell apoptosis is observed from 9 wk of age and takes place after an insulitis period that begins at an earlier age. Previous studies by our group have shown an antiproliferative effect of proinflammatory cytokines on cultured beta-cells in Wistar rats, an effect that was partially reversed by Exendin-4, an analogue of glucagon-like peptide-1. In the current study, the changes in beta-cell apoptosis and proliferation during insulitis stage were also determined in pancreatic tissue sections in normal and thymectomized BB rats, as well as in Wistar rats of 5, 7, 9, and 11 wk of age. Although stable beta-cell proliferation in Wistar and thymectomized BB rats was observed along the course of the study, a decrease in beta-cell proliferation and beta-cell mass from the age of 5 wk, and prior to the commencement of apoptosis, was noted in BB rats. Exendin-4, in combination with anti-interferon-gamma antibody, induced a near-total recovery of beta-cell proliferation during the initial stages of insulitis. This highlights the importance of early intervention and, as well, the possibilities of new therapeutic approaches in preventing autoimmune diabetes by acting, initially, in the insulitis stage and, subsequently, on beta-cell regeneration and on beta-cell apoptosis.
Resumo:
The specificity of recognition of pMHC complexes by T lymphocytes is determined by the V regions of the TCR alpha- and beta-chains. Recent experimental evidence has suggested that Ag-specific TCR repertoires may exhibit a more V alpha- than V beta-restricted usage. Whether V alpha usage is narrowed during immune responses to Ag or if, on the contrary, restricted V alpha usage is already defined at the early stages of TCR repertoire selection, however, has remained unexplored. Here, we analyzed V and CDR3 TCR regions of single circulating naive T cells specifically detected ex vivo and isolated with HLA-A2/melan-A peptide multimers. Similarly to what was previously observed for melan-A-specific Ag-experienced T cells, we found a relatively wide V beta usage, but a preferential V alpha 2.1 usage. Restricted V alpha 2.1 usage was also found among single CD8(+) A2/melan-A multimer(+) thymocytes, indicating that V alpha-restricted selection takes place in the thymus. V alpha 2.1 usage, however, was independent from functional avidity of Ag recognition. Thus, interaction of the pMHC complex with selected V alpha-chains contributes to set the broad Ag specificity, as underlined by preferential binding of A2/melan-A multimers to V alpha 2.1-bearing TCRs, whereas functional outcomes result from the sum of these with other interactions between pMHC complex and TCR.
Resumo:
Islet adaptations to pregnancy were explored in C57BL6/J mice lacking functional receptors for glucagon-like peptide 1 (GLP-1) and gastric inhibitory polypeptide (GIP). Pregnant wild type mice and GIPRKO mice exhibited marked increases in islet and beta cell area, numbers of medium/large sized islets, with positive effects on Ki67/Tunel ratio favouring beta cell growth and enhanced pancreatic insulin content. Alpha cell area and glucagon content were unchanged but prohormone convertases PC2 and PC1/3 together with significant amounts of GLP-1 and GIP were detected in alpha cells. Knockout of GLP-1R abolished these islet adaptations and paradoxically decreased pancreatic insulin, GLP-1 and GIP. This was associated with abolition of normal pregnancy-induced increases in plasma GIP, L-cell numbers, and intestinal GIP and GLP-1 stores. These data indicate that GLP-1 but not GIP is a key mediator of beta cell mass expansion and related adaptations in pregnancy, triggered in part by generation of intra-islet GLP-1.
Resumo:
Introduction Le neuroblastome (NB) est la tumeur maligne solide extra-crânienne la plus fréquente chez l'enfant. Sa présentation clinique est très hétérogène, allant d'une tumeur localisée à une atteinte métastatique sévère. Malgré des traitements agressifs, environ 55% des NB de hauts risques sont actuellement résistants aux thérapies. L'espoir réside dans le développement de traitements ciblant les mécanismes moléculaires responsables du développement et de la progression du NB. Le gène Anaplastic Lymphoma Kinase (ALK) codant pour un récepteur tyrosine kinase a été particulièrement étudié ces dernières années car il est muté, amplifié ou surexprimé dans une majorité des NBs. Le but de ce projet était d'investiguer le rôle de ALK-wt, ainsi que de ces deux plus fréquentes mutations, ALK- F1174L et ALK-R1245Q, dans l'oncogenèse du NB. Le NB étant originaire des cellules de la crête neurale, nous avons analysé le potentiel oncogénique de ces différentes formes de ALK dans des cellules progénitrices de la crête neurale (NCPC). Méthode Des NCPC de souris (JoMal), possédant un c-MycER inductible pour leur maintien en culture in vitro, ont été transduites par un rétrovirus permettant l'expression stable de ALK-wt, ALK-F1174L et ALK-R1245Q. Des tests in vitro ont d'abord été effectués pour tester le système c-MycER, la stabilité de nos cellules transduites, leur phénotype, leur capacité de croissance et leur tumorigénicité. Les cellules transduites ont ensuite été injectées dans des souris immunosupprimées en sous-cutané, puis en orthotopique, c'est-à-dire dans leur glande surrénale, afin de mesurer leur tumorigénicité in vivo. Résultats La transduction et l'expression stable de ALK n'ont pas modifié le phénotype indifférencié des JoMal, ni de manière significative la capacité de croissance des cellules in vitro en absence d'activation de c-MycER. Par contre, lorsque c-MycER est actif, les cellules porteuses des mutations Fl 174L et R1245Q ont montré une meilleure capacité de prolifération et de formation de colonies, par rapport aux JoMal-ALK-wt et aux cellules contrôles en culture 3D dans de la méthylcellulose et dans un test de formation de neurosphères. In vivo, les souris injectées avec les cellules JoMal-ALK- F1174L en sous-cutané ou dans la glande surrénale ont rapidement développé des tumeurs, suivies par le groupe JoMal-ALK-R1245Q et le groupe JoMal-ALK-wt, alors que les groupes de souris contrôles n'ont présenté aucune tumeur. En orthotopique, nous avons obtenu 5/6 tumeurs ALK-F1174L, 7/7 tumeurs ALK-R1245Q et 6/7 tumeurs ALK-wt. Les tumeurs sous-cutanées ne présentaient pas de différences morphologiques et histologiques entre les différents groupes et montraient une histologie compatible avec un NB. Les tumeurs orthotopiques restent encore à analyser. Conclusion Cette étude a permis de démontrer que les mutations activatrices Fl 174L et R1245Q ont des propriétés tumorigéniques in vitro dans des NCPC et in vivo tandis que la forme sauvage de ALK montre une capacité oncogénique uniquement in vivo. Bien que la caractérisation des tumeurs orthotopiques n'a pas encore été effectuée, l'analyse des tumeurs sous-cutanées nous suggère que l'expression de ALK- wt ou muté est suffisante pour induire la formation de NB à partir des cellules progénitrices de la crête neurale. Le gène ALK semble donc jouer un rôle important dans l'oncogénèse du NB, aussi bien par la présence de mutations activatrices que par sa fréquente surexpression.
Resumo:
Doñana National Park (DNP) in southern Spain is a UNESCO Biosphere Reserve where commercial hunting and wildlife artificial feeding do not take place and traditional cattle husbandry still exists. Herein, we hypothesized that Mycobacterium bovis infection prevalence in wild ungulates will depend on host ecology and that variation in prevalence will reflect variation in the interaction between hosts and environmental risk factors. Cattle bTB reactor rates increased in DNP despite compulsory testing and culling of infected animals. In this study, 124 European wild boar, 95 red deer, and 97 fallow deer were sampled from April 2006 to April 2007 and analyzed for M. bovis infection. Modelling and GIS were used to identify risk factors and intra and inter-species relationships. Infection with M. bovis was confirmed in 65 (52.4%) wild boar, 26 (27.4%) red deer and 18 (18.5%) fallow deer. In the absence of cattle, wild boar M. bovis prevalence reached 92.3% in the northern third of DNP. Wild boar showed more than twice prevalence than that in deer (p<0.001). Modelling revealed that M. bovis prevalence decreased from North to South in wild boar (p<0.001) and red deer (p<0.01), whereas no spatial pattern was evidenced for fallow deer. Infection risk in wild boar was dependent on wild boar M. bovis prevalence in the buffer area containing interacting individuals (p<0.01). The prevalence recorded in this study is among the highest reported in wildlife. Remarkably, this high prevalence occurs in the absence of wildlife artificial feeding, suggesting that a feeding ban alone would have a limited effect on wildlife M. bovis prevalence. In DNP, M. bovis transmission may occur predominantly at the intra-species level due to ecological, behavioural and epidemiological factors. The results of this study allow inferring conclusions on epidemiological bTB risk factors in Mediterranean habitats that are not managed for hunting purposes. Our results support the need to consider wildlife species for the control of bTB in cattle and strongly suggest that bTB may affect animal welfare and conservation.
Resumo:
The Arabidopsis opr3 mutant is defective in the isoform of 12-oxo-phytodienoate (OPDA) reductase required for jasmonic acid (JA) biosynthesis. Oxylipin signatures of wounded opr3 leaves revealed the absence of detectable 3R,7S-JA as well as altered levels of its cyclopentenone precursors OPDA and dinor OPDA. In contrast to JA-insensitive coi1 plants and to the fad3 fad7 fad8 mutant lacking the fatty acid precursors of JA synthesis, opr3 plants exhibited strong resistance to the dipteran Bradysia impatiens and the fungus Alternaria brassicicola. Analysis of transcript profiles in opr3 showed the wound induction of genes previously known to be JA-dependent, suggesting that cyclopentenones could fulfill some JA roles in vivo. Treating opr3 plants with exogenous OPDA powerfully up-regulated several genes and disclosed two distinct downstream signal pathways, one through COI1, the other via an electrophile effect of the cyclopentenones. We conclude that the jasmonate family cyclopentenone OPDA (most likely together with dinor OPDA) regulates gene expression in concert with JA to fine-tune the expression of defense genes. More generally, resistance to insect and fungal attack can be observed in the absence of JA.
Resumo:
Breast cancer is a heterogeneous disease with varied morphological appearances, molecular features, behavior, and response to therapy. Current routine clinical management of breast cancer relies on the availability of robust clinical and pathological prognostic and predictive factors to support clinical and patient decision making in which potentially suitable treatment options are increasingly available. One of the best-established prognostic factors in breast cancer is histological grade, which represents the morphological assessment of tumor biological characteristics and has been shown to be able to generate important information related to the clinical behavior of breast cancers. Genome-wide microarray-based expression profiling studies have unraveled several characteristics of breast cancer biology and have provided further evidence that the biological features captured by histological grade are important in determining tumor behavior. Also, expression profiling studies have generated clinically useful data that have significantly improved our understanding of the biology of breast cancer, and these studies are undergoing evaluation as improved prognostic and predictive tools in clinical practice. Clinical acceptance of these molecular assays will require them to be more than expensive surrogates of established traditional factors such as histological grade. It is essential that they provide additional prognostic or predictive information above and beyond that offered by current parameters. Here, we present an analysis of the validity of histological grade as a prognostic factor and a consensus view on the significance of histological grade and its role in breast cancer classification and staging systems in this era of emerging clinical use of molecular classifiers.
Resumo:
Hodgkin's lymphoma represents one of the most frequent lymphoproliferative syndromes, especially in young population. Although HL is considered one of the most curable tumors, a sizeable fraction of patients recur after successful upfront treatment or, less commonly, are primarily resistant. This work tries to summarize the data on clinical, histological, pathological, and biological factors in HL, with special emphasis on the improvement of prognosis and their impact on therapeutical strategies. The recent advances in our understanding of HL biology and immunology show that infiltrated immune cells and cytokines in the tumoral microenvironment may play different functions that seem tightly related with clinical outcomes. Strategies aimed at interfering with the crosstalk between tumoral Reed-Sternberg cells and their cellular partners have been taken into account in the development of new immunotherapies that target different cell components of HL microenvironment. This new knowledge will probably translate into a change in the antineoplastic treatments in HL in the next future and hopefully will increase the curability rates of this disease.
Resumo:
Since Staphylococcus aureus expresses multiple pathogenic factors, studying their individual roles in single-gene-knockout mutants is difficult. To circumvent this problem, S. aureus clumping factor A (clfA) and fibronectin-binding protein A (fnbA) genes were constitutively expressed in poorly pathogenic Lactococcus lactis using the recently described pOri23 vector. The recombinant organisms were tested in vitro for their adherence to immobilized fibrinogen and fibronectin and in vivo for their ability to infect rats with catheter-induced aortic vegetations. In vitro, both clfA and fnbA increased the adherence of lactococci to their specific ligands to a similar extent as the S. aureus gene donor. In vivo, the minimum inoculum size producing endocarditis in > or =80% of the rats (80% infective dose [ID80]) with the parent lactococcus was > or =10(7) CFU. In contrast, clfA-expressing and fnbA-expressing lactococci required only 10(5) CFU to infect the majority of the animals (P < 0.00005). This was comparable to the infectivities of classical endocarditis pathogens such as S. aureus and streptococci (ID80 = 10(4) to 10(5) CFU) in this model. The results confirmed the role of clfA in endovascular infection, but with a much higher degree of confidence than with single-gene-inactivated staphylococci. Moreover, they identified fnbA as a critical virulence factor of equivalent importance. This was in contrast to previous studies that produced controversial results regarding this very determinant. Taken together, the present observations suggest that if antiadhesin therapy were to be developed, at least both of the clfA and fnbA products should be blocked for the therapy to be effective.