985 resultados para Reduction (Chemistry)
Resumo:
A rapid increase in allergic diseases in Western societies has led to the conclusion that our modern lifestyle is a risk factor for immune dysregulation. Potential culprits and benefactors are searched among early dietary and microbial exposures, which may act to program later allergic disease. The aim of this thesis was to investigate the role of early maternal and child nutrition in reducing the risk of child allergy. The study population comprised of 256 mother – child pairs from families with a history of allergy participating in a randomized controlled dietary counseling and probiotic intervention (Lactobacillus rhamnosus GG and Bifidobacterium lactis Bb12) study from early pregnancy onwards. The dietary counseling aimed for a diet complying with dietary recommendations for pregnant and lactating women, with special attention to fat quality. Maternal dietary counseling was reflected in cord blood fatty acids suggesting better essential fatty acid status in infants in the counseling group. Dietary counseling with probiotics or placebo had no effect on child allergy risk, but associations between maternal diet during pregnancy and breastfeeding and child allergic outcomes were found in secondary analyses. During pregnancy, milk intake was related to decreased and cheese intake to increased risk of child atopic eczema. During breastfeeding, intake of vitamin C was related to increased risk of asthma and intake of egg was related to decreased risk of atopic eczema. The timing of introduction of complementary foods to infant’s diet was not associated with risk of atopic eczema, when adjusted with parental opinion of child allergic symptoms (i.e., potential reverse causality). In conclusion, the results demonstrate that infant fatty acid supply can be modified via maternal dietary changes. In addition, interesting associations of maternal diet with child allergy risk were discovered. However, no difference in the incidence of allergic diseases with dietary counseling was observed. This suggests that more potent dietary interventions might be necessitated to induce clinical risk reduction of allergy. Highrisk families can safely adhere to dietary recommendations for pregnant and lactating women, and the results support the current conception that no additional benefit is gained with delaying introduction of complementary feeding.
Resumo:
Identification of low-dimensional structures and main sources of variation from multivariate data are fundamental tasks in data analysis. Many methods aimed at these tasks involve solution of an optimization problem. Thus, the objective of this thesis is to develop computationally efficient and theoretically justified methods for solving such problems. Most of the thesis is based on a statistical model, where ridges of the density estimated from the data are considered as relevant features. Finding ridges, that are generalized maxima, necessitates development of advanced optimization methods. An efficient and convergent trust region Newton method for projecting a point onto a ridge of the underlying density is developed for this purpose. The method is utilized in a differential equation-based approach for tracing ridges and computing projection coordinates along them. The density estimation is done nonparametrically by using Gaussian kernels. This allows application of ridge-based methods with only mild assumptions on the underlying structure of the data. The statistical model and the ridge finding methods are adapted to two different applications. The first one is extraction of curvilinear structures from noisy data mixed with background clutter. The second one is a novel nonlinear generalization of principal component analysis (PCA) and its extension to time series data. The methods have a wide range of potential applications, where most of the earlier approaches are inadequate. Examples include identification of faults from seismic data and identification of filaments from cosmological data. Applicability of the nonlinear PCA to climate analysis and reconstruction of periodic patterns from noisy time series data are also demonstrated. Other contributions of the thesis include development of an efficient semidefinite optimization method for embedding graphs into the Euclidean space. The method produces structure-preserving embeddings that maximize interpoint distances. It is primarily developed for dimensionality reduction, but has also potential applications in graph theory and various areas of physics, chemistry and engineering. Asymptotic behaviour of ridges and maxima of Gaussian kernel densities is also investigated when the kernel bandwidth approaches infinity. The results are applied to the nonlinear PCA and to finding significant maxima of such densities, which is a typical problem in visual object tracking.
Resumo:
Different nitrogen oxide removal technologies for rotary lime kiln are studied in this thesis, the main focus being in commercial technologies. Post-combustion methods are investigated in more detail as potential possible NOx removal with combustion methods in rotary lime kiln is more limited or primary methods are already in use. However, secondary methods as NOx scrubber, SNCR or SCR technologies are not listed as the Best Available Technologies defined by European Union. BAT technologies for NOx removal in lime kiln are (1) Optimised combustion and combustion control, (2) Good mixing of fuel and air, (3) Low-NOx burner and (4) Fuel selection/low-N fuel. SNCR method is the most suitable technique for NOx removal in lime kiln when NOx removal from 50 % to 70 % is required in case primary methods are already in use or cannot be applied. In higher removal cases ammonia slip is an issue in SNCR. By using SCR better NOx reduction can be achieved but issues with catalyst materials are expected to arise because of the dust and sulphur dioxide which leads to catalyst poison formation in lower flue gas temperatures. NOx scrubbing has potential when simultaneous NOx and SO2 removal is required. The challenge is that NO cannot be scrubbed directly, but once it is oxidized to NO2 or further scrubbing can be performed as the solubility of NO2 is higher. Commercial installations have not been made regarding SNCR, SCR or NOx scrubbing regarding rotary lime kiln. For SNCR and SCR the closest references come from cement industry.
Resumo:
Most studies suggest that serotonin exerts an inhibitory control on the aggression process. According to experimental evidence, this amine also influences growth and development of the nervous tissue including serotoninergic neurons. Thus, the possibility exists that increased serotonin availability in young animals facilitates a long-lasting effect on aggressive responses. The present study aimed to investigate the aggressive behavior of adult rats (90-120 days) treated from the 1st to the 19th postnatal day with citalopram (CIT), a selective serotonin reuptake inhibitor (20 mg/kg, sc, every 3 days). Aggressive behavior was induced by placing a pair of rats (matched by weight) in a box (20 x 20 x 20 cm), and submitting them to a 20-min session of electric footshocks (five 1.6-mA - 2-s current pulses, separated by a 4-min intershock interval). When compared to the control group (rats treated for the same period with equivalent volumes of saline solution), the CIT group presented a 41.4% reduction in the duration of aggressive response. The results indicate that the repeated administration of CIT early in life reduces the aggressive behavior in adulthood and suggest that the increased brain serotoninergic activity could play a role in this effect.
Resumo:
It is well known that the interaction of polyelectrolytes with oppositely charged surfactants leads to an associative phase separation; however, the phase behavior of DNA and oppositely charged surfactants is more strongly associative than observed in other systems. A precipitate is formed with very low amounts of surfactant and DNA. DNA compaction is a general phenomenon in the presence of multivalent ions and positively charged surfaces; because of the high charge density there are strong attractive ion correlation effects. Techniques like phase diagram determinations, fluorescence microscopy, and ellipsometry were used to study these systems. The interaction between DNA and catanionic mixtures (i.e., mixtures of cationic and anionic surfactants) was also investigated. We observed that DNA compacts and adsorbs onto the surface of positively charged vesicles, and that the addition of an anionic surfactant can release DNA back into solution from a compact globular complex between DNA and the cationic surfactant. Finally, DNA interactions with polycations, chitosans with different chain lengths, were studied by fluorescence microscopy, in vivo transfection assays and cryogenic transmission electron microscopy. The general conclusion is that a chitosan effective in promoting compaction is also efficient in transfection.
Resumo:
Permanent magnet synchronous machines with fractional-slot non-overlapping windings (FSPMSM), also known as tooth-coil winding permanent magnet synchronous machines (TCW PMSM), have been under intensive research during the latest decade. There are many optimization routines explained and implemented in the literature in order to improve the characteristics of this machine type. This paper introduces a new technique for torque ripple minimization in TCW PMSM. The source of torque harmonics is also described. The low order torque harmonics can be harmful for a variety of applications, such as direct drive wind generators, direct drive light vehicle electrical motors, and for some high precision servo applications. The reduction of the torque ripple harmonics with the lowest orders (6th and 12th) is realized by machine geometry optimization technique using finite element analysis (FEA). The presented optimization technique includes the stator geometry adjustment in TCW PMSMs with rotor surface permanent magnets and with rotor embedded permanent magnets. Influence of the permanent magnet skewing on the torque ripple reduction and cogging torque elimination was also investigated. It was implemented separately and together with the stator optimization technique. As a result, the reduction of some torque ripple harmonics was attained.
Resumo:
Iron is one of the most common elements in the earth’s crust and thus its availability and economic viability far exceed that of metals commonly used in catalysis. Also the toxicity of iron is miniscule, compared to the likes of platinum and nickel, making it very desirable as a catalyst. Despite this, prior to the 21st century, the applicability of iron in catalysis was not thoroughly investigated, as it was considered to be inefficient and unselective in desired transformations. In this doctoral thesis, the application of iron catalysis in combination with organosilicon reagents for transformations of carbonyl compounds has been investigated together with insights into iron catalyzed chlorination of silanes and silanols. In the first part of the thesis, the synthetic application of iron(III)-catalyzed chlorination of silanes (Si-H) and the monochlorination of silanes (SiH2) using acetyl chloride as the chlorine source is described. The reactions proceed under ambient conditions, although some compounds need to be protected from excess moisture. In addition, the mechanism and kinetics of the chlorination reaction are briefly adressed. In the second part of this thesis a versatile methodology for transformation of carbonyl compounds into three different compound classes by changing the conditions and amounts of reagents is discussed. One pot reductive benzylation, reductive halogenation and reductive etherification of ketones and aldehydes using silanes as the reducing agent, halide source or cocatalyst, were investigated. Also the reaction kinetics and mechanism of the reductive halogenation of acetophenone are briefly discussed.
Resumo:
Treatment of non-thyroidal illness by intravenous triiodothyronine (T3) after cardiac surgery causes a disproportional elevation of hormone levels. The administration of oral T3, which has never been studied in this context, could cause physiological hormone levels. The aim of this study was to test oral T3 for the prevention of T3 reduction during the postoperative period of valvular cardiac surgery in adults. Eighteen patients who underwent cardiac surgery for valvular disease with invasive hemodynamic monitoring were randomly assigned to 2 groups: the T group received oral T3 (N = 8), 25 µg three times/day, initiated 24 h before surgery and maintained for 48 h and the NT group (N = 10) received placebo. Serum T3, thyroxine and thyrotropin were determined at baseline, 1 h before surgery, within 30 min of cardiopulmonary bypass and 6, 12, 24, and 48 h after removal of the aortic cross-clamp. Baseline T3 was similar in both groups (T: 119 ± 13; NT: 131 ± 9 ng/dL). Serum T3 increased during the first 24 h in the T group compared to the NT group (232 ± 18 vs 151 ± 13 ng/dL; P < 0.001). In the NT group, T3 was reduced by 24% (P = 0.007) 6 h after removal of the aortic cross-clamp, confirming the non-thyroidal illness syndrome. There were no differences in clinical or hemodynamic parameters between groups. Administration of oral T3 prevented its serum reduction after valvular cardiac surgery in adults, with normal serum levels for 48 h without disproportional elevations.
Resumo:
Electrical machine drives are the most electrical energy-consuming systems worldwide. The largest proportion of drives is found in industrial applications. There are, however many other applications that are also based on the use of electrical machines, because they have a relatively high efficiency, a low noise level, and do not produce local pollution. Electrical machines can be classified into several categories. One of the most commonly used electrical machine types (especially in the industry) is induction motors, also known as asynchronous machines. They have a mature production process and a robust rotor construction. However, in the world pursuing higher energy efficiency with reasonable investments not every application receives the advantage of using this type of motor drives. The main drawback of induction motors is the fact that they need slipcaused and thus loss-generating current in the rotor, and additional stator current for magnetic field production along with the torque-producing current. This can reduce the electric motor drive efficiency, especially in low-speed, low-power applications. Often, when high torque density is required together with low losses, it is desirable to apply permanent magnet technology, because in this case there is no need to use current to produce the basic excitation of the machine. This promotes the effectiveness of copper use in the stator, and further, there is no rotor current in these machines. Again, if permanent magnets with a high remanent flux density are used, the air gap flux density can be higher than in conventional induction motors. These advantages have raised the popularity of PMSMs in some challenging applications, such as hybrid electric vehicles (HEV), wind turbines, and home appliances. Usually, a correctly designed PMSM has a higher efficiency and consequently lower losses than its induction machine counterparts. Therefore, the use of these electrical machines reduces the energy consumption of the whole system to some extent, which can provide good motivation to apply permanent magnet technology to electrical machines. However, the cost of high performance rare earth permanent magnets in these machines may not be affordable in many industrial applications, because the tight competition between the manufacturers dictates the rules of low-cost and highly robust solutions, where asynchronous machines seem to be more feasible at the moment. Two main electromagnetic components of an electrical machine are the stator and the rotor. In the case of a conventional radial flux PMSM, the stator contains magnetic circuit lamination and stator winding, and the rotor consists of rotor steel (laminated or solid) and permanent magnets. The lamination itself does not significantly influence the total cost of the machine, even though it can considerably increase the construction complexity, as it requires a special assembly arrangement. However, thin metal sheet processing methods are very effective and economically feasible. Therefore, the cost of the machine is mainly affected by the stator winding and the permanent magnets. The work proposed in this doctoral dissertation comprises a description and analysis of two approaches of PMSM cost reduction: one on the rotor side and the other on the stator side. The first approach on the rotor side includes the use of low-cost and abundant ferrite magnets together with a tooth-coil winding topology and an outer rotor construction. The second approach on the stator side exploits the use of a modular stator structure instead of a monolithic one. PMSMs with the proposed structures were thoroughly analysed by finite element method based tools (FEM). It was found out that by implementing the described principles, some favourable characteristics of the machine (mainly concerning the machine size) will inevitable be compromised. However, the main target of the proposed approaches is not to compete with conventional rare earth PMSMs, but to reduce the price at which they can be implemented in industrial applications, keeping their dimensions at the same level or lower than those of a typical electrical machine used in the industry at the moment. The measurement results of the prototypes show that the main performance characteristics of these machines are at an acceptable level. It is shown that with certain specific actions it is possible to achieve a desirable efficiency level of the machine with the proposed cost reduction methods.
Resumo:
To determine if Butea superba Roxb., a traditional Thai male potency herb, has androgenic activity in 60-day-old male Wistar rats, we measured its effects on the pituitary-testicular axis and sex organs. Intact and orchidectomized adult male rats were subdivided into five groups (10 rats/group): distilled water, Butea superba (BS)-10, BS-50, BS-250, and testosterone propionate (TP). They received 0, 10, 50, and 250 mg·kg body weight-1·day-1 BS in distilled water by gavage and 6 mg·kg body weight-1·day-1 TP sc, respectively, during the 30-day treatment period. Blood was collected every 15 days and luteinizing hormone (LH), follicle-stimulating hormone (FSH) and testosterone were measured. Changes of weight and histological appearance of sex organs were determined at the end of the 30-day treatment and 15-day post-treatment periods. TP treatment reduced serum FSH and LH levels and significantly increased the weight of the seminal vesicles and epididymis, in accordance with histopathological changes, in both intact and orchidectomized rats. No changes in serum testosterone, LH, and FSH levels were observed in any of the intact rats treated with BS, but a significant increase in seminal vesicle weight was observed only in the BS-250 group. Although a significant reduction in serum LH was detected in the BS-50 and BS-250 groups of orchidectomized rats, no significant change in weight or histology of sex organs was observed. Thus, we conclude that B. superba needs endogenous testosterone to work synergistically to stimulate the accessory sex organ of intact animals and can potentially exhibit an LH reduction effect in orchidectomized animals.
Resumo:
Intestinal barrier dysfunction plays an important role in spontaneous bacterial peritonitis. In the present study, changes in the intestinal barrier with regard to levels of secretory immunoglobulin A (SIgA) and its components were studied in fulminant hepatic failure (FHF). Immunohistochemistry and double immunofluorescent staining were used to detect intestinal IgA, the secretory component (SC) and SIgA in patients with FHF (20 patients) and in an animal model with FHF (120 mice). Real-time PCR was used to detect intestinal SC mRNA in the animal model with FHF. Intestinal SIgA, IgA, and SC staining in patients with FHF was significantly weaker than in the normal control group (30 patients). Intestinal IgA and SC staining was significantly weaker in the animal model with FHF than in the control groups (normal saline: 30 mice; lipopolysaccharide: 50 mice; D-galactosamine: 50 mice; FHF: 120 mice). SC mRNA of the animal model with FHF at 2, 6, and 9 h after injection was 0.4 ± 0.02, 0.3 ± 0.01, 0.09 ± 0.01, respectively. SC mRNA of the animal model with FHF was significantly decreased compared to the normal saline group (1.0 ± 0.02) and lipopolysaccharide group (0.89 ± 0.01). The decrease in intestinal SIgA and SC induced failure of the intestinal immunologic barrier and the attenuation of gut immunity in the presence of FHF.
Drag reduction by polyethylene glycol in the tail arterial bed of normotensive and hypertensive rats
Resumo:
This study was designed to evaluate the effect of drag reducer polymers (DRP) on arteries from normotensive (Wistar) and spontaneously hypertensive rats (SHR). Polyethylene glycol (PEG 4000 at 5000 ppm) was perfused in the tail arterial bed with (E+) and without endothelium (E-) from male, adult Wistar (N = 14) and SHR (N = 13) animals under basal conditions (constant flow at 2.5 mL/min). In these preparations, flow-pressure curves (1.5 to 10 mL/min) were constructed before and 1 h after PEG 4000 perfusion. Afterwards, the tail arterial bed was fixed and the internal diameters of the arteries were then measured by microscopy and drag reduction was assessed based on the values of wall shear stress (WSS) by computational simulation. In Wistar and SHR groups, perfusion of PEG 4000 significantly reduced pulsatile pressure (Wistar/E+: 17.5 ± 2.8; SHR/E+: 16.3 ± 2.7%), WSS (Wistar/E+: 36; SHR/E+: 40%) and the flow-pressure response. The E- reduced the effects of PEG 4000 on arteries from both groups, suggesting that endothelial damage decreased the effect of PEG 4000 as a DRP. Moreover, the effects of PEG 4000 were more pronounced in the tail arterial bed from SHR compared to Wistar rats. In conclusion, these data demonstrated for the first time that PEG 4000 was more effective in reducing the pressure-flow response as well as WSS in the tail arterial bed of hypertensive than of normotensive rats and these effects were amplified by, but not dependent on, endothelial integrity. Thus, these results show an additional mechanism of action of this polymer besides its mechanical effect through the release and/or bioavailability of endothelial factors.
Resumo:
This study explored the reduction of adenosine triphosphate (ATP) levels in L-02 hepatocytes by hexavalent chromium (Cr(VI)) using chi-square analysis. Cells were treated with 2, 4, 8, 16, or 32 μM Cr(VI) for 12, 24, or 36 h. Methyl thiazolyl tetrazolium (MTT) experiments and measurements of intracellular ATP levels were performed by spectrophotometry or bioluminescence assays following Cr(VI) treatment. The chi-square test was used to determine the difference between cell survival rate and ATP levels. For the chi-square analysis, the results of the MTT or ATP experiments were transformed into a relative ratio with respect to the control (%). The relative ATP levels increased at 12 h, decreased at 24 h, and increased slightly again at 36 h following 4, 8, 16, 32 μM Cr(VI) treatment, corresponding to a "V-shaped" curve. Furthermore, the results of the chi-square analysis demonstrated a significant difference of the ATP level in the 32-μM Cr(VI) group (P < 0.05). The results suggest that the chi-square test can be applied to analyze the interference effects of Cr(VI) on ATP levels in L-02 hepatocytes. The decreased ATP levels at 24 h indicated disruption of mitochondrial energy metabolism and the slight increase of ATP levels at 36 h indicated partial recovery of mitochondrial function or activated glycolysis in L-02 hepatocytes.
Resumo:
A recent study showed that miR-26a is downregulated in hepatocellular carcinoma tissues and that this downregulation is an independent predictor of survival. Interestingly, the same study also reported that miR-26a downregulation causes a concomitant elevation of IL-6 expression. Because miR-26a expression was found to be transcriptionally downregulated by oncogene c-Myc in various cancers, and the expression of c-Myc was increased by IL-6 stimulation, we hypothesized that IL-6 contributes to reduction of miR-26a in hepatocellular carcinoma. Serum IL-6 was measured by ELISA and miR-26a was detected by qRT-PCR. The data of 30 patients with hepatocellular carcinoma who had undergone surgical tumor resection revealed that serum IL-6 could be considered to be a predictor of survival up to 5 years for hepatocellular carcinoma patients (log-rank test, P < 0.05). We observed that the serum IL-6 concentration was inversely correlated with miR-26a expression in cancerous tissues (Pearson correlation test, r = -0.651, P < 0.01). Furthermore, by in vitro experiments with HepG2 cells, we showed that IL-6 stimulation can lead to miR-26a suppression via c-Myc activation, whereas in normal hepatocyte LO2 cells incubation with IL-6 had no significant effect on miR-26a expression. Taken together, these results indicate that miR-26a reduction in hepatocellular carcinoma might be due to IL-6 upregulation.
Resumo:
Most drugs function by binding reversibly to specific biological targets, and therapeutic effects generally require saturation of these targets. One means of decreasing required drug concentrations is incorporation of reactive metal centers that elicit irreversible modification of targets. A common approach has been the design of artificial proteases/nucleases containing metal centers capable of hydrolyzing targeted proteins or nucleic acids. However, these hydrolytic catalysts typically provide relatively low rate constants for target inactivation. Recently, various catalysts were synthesized that use oxidative mechanisms to selectively cleave/inactivate therapeutic targets, including HIV RRE RNA or angiotensin converting enzyme (ACE). These oxidative mechanisms, which typically involve reactive oxygen species (ROS), provide access to comparatively high rate constants for target inactivation. Target-binding affinity, co-reactant selectivity, reduction potential, coordination unsaturation, ROS products (metal-associated vsmetal-dissociated; hydroxyl vs superoxide), and multiple-turnover redox chemistry were studied for each catalyst, and these parameters were related to the efficiency, selectivity, and mechanism(s) of inactivation/cleavage of the corresponding target for each catalyst. Important factors for future oxidative catalyst development are 1) positioning of catalyst reduction potential and redox reactivity to match the physiological environment of use, 2) maintenance of catalyst stability by use of chelates with either high denticity or other means of stabilization, such as the square planar geometric stabilization of Ni- and Cu-ATCUN complexes, 3) optimal rate of inactivation of targets relative to the rate of generation of diffusible ROS, 4) targeting and linker domains that afford better control of catalyst orientation, and 5) general bio-availability and drug delivery requirements.