875 resultados para Red Blood Cells
Resumo:
In mice, interleukin-18 (IL-18) regulates Th1- or Th2-type immune responses depending on the cytokine environment and effector cells involved, and the ST2-ligand, IL-33, primarily promotes an allergic phenotype. Human basophils, major players in allergic inflammation, constitutively express IL-18 receptors, while ST2 surface expression is inducible by IL-3. Unexpectedly, freshly isolated basophils are strongly activated by IL-33, but, in contrast to mouse basophils, do not respond to IL-18. IL-33 promotes IL-4, IL-13 and IL-8 secretion in synergy with IL-3 and/or FcepsilonRI-activation, and enhances FcepsilonRI-induced mediator release. These effects are similar to that of IL-3, but the signaling pathways engaged are distinct because IL-33 strongly activates NF-kappaB and shows a preference for p38 MAP-kinase, while IL-3 acts through Jak/Stat and preferentially activates ERK. Eosinophils are the only other leukocyte-type directly activated by IL-33, as evidenced by screening of p38-activation in peripheral blood cells. Only upon CD3/CD28-ligation, IL-33 weakly enhances Th2 cytokine expression by in vivo polarized Th2 cells. This study on primary human cells demonstrates that basophils and eosinophils are the only direct target leukocytes for IL-33, suggesting that IL-33 promotes allergic inflammation and Th2 polarization mainly by the selective activation of these specialized cells of the innate immune system.
ALTERNATING CURRENT DIELECTROPHORETIC MANIPULATION OF ERYTHROCYTES IN MEDICAL MICRODEVICE TECHNOLOGY
Resumo:
Medical microdevices have gained popularity in the past few decades because they allow the medical laboratory to be taken out into the field and for disease diagnostics to happen with a smaller sample volume, at a lower cost and much faster. Blood is the human body's most readily available and informative diagnostic fluid because of the wealth of information it provides about the body's general health including enzymatic, proteomic and immunological states. The purpose of this project is to optimize operating conditions and study ABO-Rh erythrocytes dielectrophoretic responses to alternating current electric signals. The end goal of this project is the creation of a relatively inexpensive microfluidic device, which can be used for the ABO-Rh typing of a blood sample. This dissertation presents results showing how blood samples of a known ABO- Rh blood type exhibit differing behavior to the same electrical stimulus based on their blood type. The first panel of donors and experiments, presented in Chapter 4 occurred when a sample of known blood type was injected into a microdevice with a T-shaped electrode configuration and the erythorcytes were found to rupture at a rate specific to their ABO-Rh blood type. The second set of experiments, presented in Chapter 5, were originally published in Electrophoresis in 20111. Novel in this work was the discovery that treatment of human erythrocytes with β-galactosidase successfully removed ABO surface antigens such that native A and B blood no longer agglutinated with the proper antibodies. This work was performed in a medium of conductivity 0.9S/m which is close to the measured conductivity of pooled plasma (~1.1S/m). The ability to perform dielectrophoresis experiments at physiological conductivities conditions is advantageous for future portable devices because the device/instrument would not need to store dilution buffers. The final results of this project, presented in Chapter 6, explore the entire dielectrophoretic spectra of the ABO-Rh erythrocytes including the cross-over frequency and the magnitudes of the positive or negative dielectrophoretic response. These were completed at lower medium conductivities of 0.1S/m and 0.01-0.04S/m. These results show that by using the sweep function built into the Agilent alternating current generator it is possible to explore how a single group of blood cells will react to rapid changes in frequency and will provide the user with curve that can be matched the theoretical dielectrophoretic response curves. As a whole this project shows that it is possible to distinguish human erythrocytes by their ABO-Rh blood type via three different dielectrophoretic methods. This work builds on the foundation of that it is possible to distinguish healthy from infected cells2-7, similar cell types1,7-14 and other work regarding the dielectrophoresis of human erythrocytes1,10,11. This work has implications in both medical diagnostics and future dielectrophoretic work because it has shown that ABO-Rh blood type is now a factor, which must be identified when working with a human blood sample. It also shows that the creation of a microfluidic device that subjects human erythrocytes to a dielectrophoretic impulse and then exports an ABO-Rh blood type is a near future possibility.
Resumo:
BACKGROUND: Erythropoiesis-stimulating agents (ESAs) reduce anemia in cancer patients and may improve quality of life, but there are concerns that ESAs might increase mortality. OBJECTIVES: Our objectives were to examine the effect of ESAs and identify factors that modify the effects of ESAs on overall survival, progression free survival, thromboembolic and cardiovascular events as well as need for transfusions and other important safety and efficacy outcomes in cancer patients. SEARCH STRATEGY: We searched the Cochrane Library, Medline, Embase and conference proceedings for eligible trials. Manufacturers of ESAs were contacted to identify additional trials. SELECTION CRITERIA: We included randomized controlled trials comparing epoetin or darbepoetin plus red blood cell transfusions (as necessary) versus red blood cell transfusions (as necessary) alone, to prevent or treat anemia in adult or pediatric cancer patients with or without concurrent antineoplastic therapy. DATA COLLECTION AND ANALYSIS: We performed a meta-analysis of randomized controlled trials comparing epoetin alpha, epoetin beta or darbepoetin alpha plus red blood cell transfusions versus transfusion alone, for prophylaxis or therapy of anemia while or after receiving anti-cancer treatment. Patient-level data were obtained and analyzed by independent statisticians at two academic departments, using fixed-effects and random-effects meta-analysis. Analyses were according to the intention-to-treat principle. Primary endpoints were on study mortality and overall survival during the longest available follow-up, regardless of anticancer treatment, and in patients receiving chemotherapy. Tests for interactions were used to identify differences in effects of ESAs on mortality across pre-specified subgroups. The present review reports only the results for the primary endpoint. MAIN RESULTS: A total of 13933 cancer patients from 53 trials were analyzed, 1530 patients died on-study and 4993 overall. ESAs increased on study mortality (combined hazard ratio [cHR] 1.17; 95% CI 1.06-1.30) and worsened overall survival (cHR 1.06; 95% CI 1.00-1.12), with little heterogeneity between trials (I(2) 0%, p=0.87 and I(2) 7.1%, p=0.33, respectively). Thirty-eight trials enrolled 10441 patients receiving chemotherapy. The cHR for on study mortality was 1.10 (95% CI 0.98-1.24) and 1.04; 95% CI 0.97-1.11) for overall survival. There was little evidence for a difference between trials of patients receiving different cancer treatments (P for interaction=0.42). AUTHORS' CONCLUSIONS: ESA treatment in cancer patients increased on study mortality and worsened overall survival. For patients undergoing chemotherapy the increase was less pronounced, but an adverse effect could not be excluded.
Resumo:
BACKGROUND: Erythropoiesis-stimulating agents reduce anaemia in patients with cancer and could improve their quality of life, but these drugs might increase mortality. We therefore did a meta-analysis of randomised controlled trials in which these drugs plus red blood cell transfusions were compared with transfusion alone for prophylaxis or treatment of anaemia in patients with cancer. METHODS: Data for patients treated with epoetin alfa, epoetin beta, or darbepoetin alfa were obtained and analysed by independent statisticians using fixed-effects and random-effects meta-analysis. Analyses were by intention to treat. Primary endpoints were mortality during the active study period and overall survival during the longest available follow-up, irrespective of anticancer treatment, and in patients given chemotherapy. Tests for interactions were used to identify differences in effects of erythropoiesis-stimulating agents on mortality across prespecified subgroups. FINDINGS: Data from a total of 13 933 patients with cancer in 53 trials were analysed. 1530 patients died during the active study period and 4993 overall. Erythropoiesis-stimulating agents increased mortality during the active study period (combined hazard ratio [cHR] 1.17, 95% CI 1.06-1.30) and worsened overall survival (1.06, 1.00-1.12), with little heterogeneity between trials (I(2) 0%, p=0.87 for mortality during the active study period, and I(2) 7.1%, p=0.33 for overall survival). 10 441 patients on chemotherapy were enrolled in 38 trials. The cHR for mortality during the active study period was 1.10 (0.98-1.24), and 1.04 (0.97-1.11) for overall survival. There was little evidence for a difference between trials of patients given different anticancer treatments (p for interaction=0.42). INTERPRETATION: Treatment with erythropoiesis-stimulating agents in patients with cancer increased mortality during active study periods and worsened overall survival. The increased risk of death associated with treatment with these drugs should be balanced against their benefits. FUNDING: German Federal Ministry of Education and Research, Medical Faculty of University of Cologne, and Oncosuisse (Switzerland).
Resumo:
BACKGROUND: Intravascular ultrasound of drug-eluting stent (DES) thrombosis (ST) reveals a high incidence of incomplete stent apposition (ISA) and vessel remodeling. Autopsy specimens of DES ST show delayed healing and hypersensitivity reactions. The present study sought to correlate histopathology of thrombus aspirates with intravascular ultrasound findings in patients with very late DES ST. METHODS AND RESULTS: The study population consisted of 54 patients (28 patients with very late DES ST and 26 controls). Of 28 patients with very late DES ST, 10 patients (1020+/-283 days after implantation) with 11 ST segments (5 sirolimus-eluting stents, 5 paclitaxel-eluting stents, 1 zotarolimus-eluting stent) underwent both thrombus aspiration and intravascular ultrasound investigation. ISA was present in 73% of cases with an ISA cross-sectional area of 6.2+/-2.4 mm(2) and evidence of vessel remodeling (index, 1.6+/-0.3). Histopathological analysis showed pieces of fresh thrombus with inflammatory cell infiltrates (DES, 263+/-149 white blood cells per high-power field) and eosinophils (DES, 20+/-24 eosinophils per high-power field; sirolimus-eluting stents, 34+/-28; paclitaxel-eluting stents, 6+/-6; P for sirolimus-eluting stents versus paclitaxel-eluting stents=0.09). The mean number of eosinophils per high-power field was higher in specimens from very late DES ST (20+/-24) than in those from spontaneous acute myocardial infarction (7+/-10), early bare-metal stent ST (1+/-1), early DES ST (1+/-2), and late bare-metal stent ST (2+/-3; P from ANOVA=0.038). Eosinophil count correlated with ISA cross-sectional area, with an average increase of 5.4 eosinophils per high-power field per 1-mm(2) increase in ISA cross-sectional area. CONCLUSIONS: Very late DES thrombosis is associated with histopathological signs of inflammation and intravascular ultrasound evidence of vessel remodeling. Compared with other causes of myocardial infarction, eosinophilic infiltrates are more common in thrombi harvested from very late DES thrombosis, particularly in sirolimus-eluting stents, and correlate with the extent of stent malapposition.
Resumo:
Chemokines are a superfamily of small chemotactic cytokines, which interact with their G-protein-coupled receptors. These interactions regulate multiple physiological functions, particularly tissue architecture and compartment-specific migration of white blood cells. It has been found that the chemokine/chemokine receptor system has been utilized by cancer cells for migration and metastasis. The chemokine receptor CCR6 is expressed in colorectal cancer and several other cancer types, and stimulation by its physiological chemokine ligand CCL20 has been reported to promote cancer cell proliferation and migration in vitro. Moreover, CCR6/CCL20 interactions apparently play a role in organ selective liver metastasis of colorectal cancer. Here, we review the literature on expression patterns of CCL20 and CCR6 and their physiological interactions as well as the currently presumed role of CCR6 and CCL20 in the formation of colorectal cancer liver metastasis, providing a potential basis for novel treatment strategies.
Resumo:
BACKGROUND: We investigated the long-term outcome of gene therapy for severe combined immunodeficiency (SCID) due to the lack of adenosine deaminase (ADA), a fatal disorder of purine metabolism and immunodeficiency. METHODS: We infused autologous CD34+ bone marrow cells transduced with a retroviral vector containing the ADA gene into 10 children with SCID due to ADA deficiency who lacked an HLA-identical sibling donor, after nonmyeloablative conditioning with busulfan. Enzyme-replacement therapy was not given after infusion of the cells. RESULTS: All patients are alive after a median follow-up of 4.0 years (range, 1.8 to 8.0). Transduced hematopoietic stem cells have stably engrafted and differentiated into myeloid cells containing ADA (mean range at 1 year in bone marrow lineages, 3.5 to 8.9%) and lymphoid cells (mean range in peripheral blood, 52.4 to 88.0%). Eight patients do not require enzyme-replacement therapy, their blood cells continue to express ADA, and they have no signs of defective detoxification of purine metabolites. Nine patients had immune reconstitution with increases in T-cell counts (median count at 3 years, 1.07x10(9) per liter) and normalization of T-cell function. In the five patients in whom intravenous immune globulin replacement was discontinued, antigen-specific antibody responses were elicited after exposure to vaccines or viral antigens. Effective protection against infections and improvement in physical development made a normal lifestyle possible. Serious adverse events included prolonged neutropenia (in two patients), hypertension (in one), central-venous-catheter-related infections (in two), Epstein-Barr virus reactivation (in one), and autoimmune hepatitis (in one). CONCLUSIONS: Gene therapy, combined with reduced-intensity conditioning, is a safe and effective treatment for SCID in patients with ADA deficiency. (ClinicalTrials.gov numbers, NCT00598481 and NCT00599781.)
Resumo:
Mounting an effective response to tissue damage requires a concerted effort from a number of systems, including both the immune and nervous systems. Immune-responsive blood cells fight infection and clear debris from damaged tissues, and specialized pain receptors become hypersensitive to promote behavior that protects the damaged area while it heals. To uncover the cellular and molecular mechanisms underlying these processes, we have developed a genetically tractable invertebrate model of damage-induced inflammation and pain hypersensitivity using Drosophila larvae. To study wound-induced inflammation, we generated transgenic larvae with fluorescent epidermal cells and blood cells (hemocytes). Using live imaging, we monitored the circulatory dynamics of hemocytes and the methods by which they accumulate at epidermal wounds. We found that circulating hemocytes attach to wound sites directly from circulation, a mechanism once thought to work exclusively in species with a closed circulatory system. To study damage-induced pain hypersensitivity, we developed a “sunburn assay” and found that larvae have a lowered pain threshold (allodynia) and an exaggerated response to noxious stimuli (hyperalgesia) following UV damage. We screened for genes required for hypersensitivity in pain receptors (nociceptors), and discovered a number of novel mediators that have well conserved mammalian homologs. Together, these results help us to understand how various cell types in the immune and nervous systems both detect and respond to tissue damage.
Resumo:
Among the first white blood cells to respond to bacterial and fungal infections, neutrophils are produced in the bone marrow, released into circulating blood, and recruited to inflamed tissue. The cytokine granulocyte colony-stimulating factor (G
Resumo:
Calcium ionophore, ionomycin, and phorbol myristate acetate (PMA) were used to activate rabbit peripheral blood B cells to study the role of increased intracellular calcium ion concentration ( (Ca$\sp2+\rbrack\sb{\rm i}$), protein kinase C (PKC) activation, and autocrine interleukin (IL-2) in inducing cell cycle entry and maintaining activation to DNA synthesis. When stimulated with a combination of ionomycin and PMA the B cells produced a soluble factor that supported the IL-2 dependent cell line, CTLL-2. The identity of the factor was established as IL-2 and its source was proved to be B cells in further experiments. Absorption studies and limiting dilution analysis indicated that IL-2 produced by B cells can act as an autocrine growth factor. Next, the effect of complete and incomplete signalling on B lymphocyte activation leading to cell cycle entry, IL-2 production, functional IL-2 receptor (IL-2R) expression, and DNA synthesis was examined. It was observed that cell cycle entry could be induced by signals provided by each reagent alone, but IL-2 production, IL-2R expression, and progression to DNA synthesis required activation with both reagents. Incomplete activation with ionomycin or PMA alone altered the responsiveness of B cells to further stimulation only in the case of ionomycin, and the unresponsiveness of these cells was apparently due to a lack of functional IL-2R expression on these cells, even though IL-2 production was maintained. The requirement of IL-2 for maintenance of activation to DNA synthesis was then investigated. The hypothesis that IL-2, acts in late G$\sb1$ and is required for DNA synthesis in B cells was supported by comparing IL-2 production and DNA synthesis in peripheral blood cells and purified B cells, kinetic analysis of these events in B cells, effects of anti-IL-2 antibody and PKC inhibitors, and by the response of G$\sb1$ B cells. Additional signals transduced by the interaction of autocrine IL-2 and functional IL-2 receptor on rabbit B cells were found to be necessary to drive these cells to S phase, after initial activation caused by simultaneous increase in (Ca$\sp2+\rbrack\sb{\rm i}$ and PKC activation had induced cell cycle entry, IL-2 production, and functional IL-2 receptor expression. ^
Resumo:
The BCR gene is involved in the pathogenesis of Philadelphia chromosome-positive (Ph$\sp1$) leukemias. Typically, the 5$\sp\prime$ portion of BCR on chromosome 22 becomes fused to a 5$\sp\prime$ truncated ABL gene from chromosome 9 resulting in a chimeric BCR-ABL gene. To investigate the role of the BCR gene product, a number of BCR peptide sequences were used to generate anti-BCR antibodies for detection of BCR and BCR-ABL proteins. Since both BCR and ABL proteins have kinase activity, the anti-BCR antibodies were tested for their ability to immunoprecipitate BCR and BCR-ABL proteins from cellular lysates by use of an immunokinase assay. Antisera directed towards the C-terminal portions of P160 BCR, sequences not present in BCR-ABL proteins, were capable of co-immunoprecipitating P210 BCR-ABL from the Ph$\sp1$- positive cell line K562. Re-immunoprecipitation studies following complete denaturation showed that C-terminal BCR antisera specifically recognized P160 BCR but not P210 BCR-ABL. These and other results indicated the presence of a P160 BCR/P210 BCR-ABL protein complex in K562 cells. Experiments performed with Ph$\sp1$-positive ALL cells and uncultured Ph$\sp1$-positive patient white blood cells established the general presence of BCR/BCR-ABL protein complexes in BCR-ABL expressing cells. However, two cell lines derived from Ph$\sp1$-positive patients lacked P160 BCR/P210 BCR-ABL complexes. Lysates from one of these cell lines mixed with lysates from a cell line that expresses only P160 BCR failed to generate BCR/BCR-ABL protein complexes in vitro indicating that P160 BCR and P210 BCR-ABL do not simply oligomerize.^ Two-dimensional tryptic maps were performed on both BCR and BCR-ABL proteins labeled in vitro with $\sp{32}$P. These maps indicate that the autophosphorylation sites in BCR-ABL proteins are primarily located within BCR exon 1 sequences in both P210 and P185 BCR-ABL, and that P160 BCR is phosphorylated in trans in similar sites by the activated ABL kinase of both BCR-ABL proteins. These results provide strong evidence that P160 BCR serves as a target for the BCR-ABL oncoprotein.^ K562 cells, induced to terminally differentiate with the tumor promoter TPA, show a loss of P210 BCR-ABL kinase activity 12-18 hours after addition of TPA. This loss coincides with the loss of activity in P160 BCR/P210 BCR-ABL complexes but not with the loss of the P210 BCR-ABL, suggesting the existence of an inactive form of P210 BCR-ABL. However, a degraded BCR-ABL protein served as the kinase active form preferentially sequestered within the remaining BCR/BCR-ABL protein complex.^ The results described in this thesis form the basis for a model for BCR-ABL induced leukemias which is presented and discussed. ^
Resumo:
Background:Erythropoiesis-stimulating agents (ESAs) reduce the need for red blood cell transfusions; however, they increase the risk of thromboembolic events and mortality. The impact of ESAs on quality of life (QoL) is controversial and led to different recommendations of medical societies and authorities in the USA and Europe. We aimed to critically evaluate and quantify the effects of ESAs on QoL in cancer patients.Methods:We included data from randomised controlled trials (RCTs) on the effects of ESAs on QoL in cancer patients. Randomised controlled trials were identified by searching electronic data bases and other sources up to January 2011. To reduce publication and outcome reporting biases, we included unreported results from clinical study reports. We conducted meta-analyses on fatigue- and anaemia-related symptoms measured with the Functional Assessment of Cancer Therapy-Fatigue (FACT-F) and FACT-Anaemia (FACT-An) subscales (primary outcomes) or other validated instruments.Results:We identified 58 eligible RCTs. Clinical study reports were available for 27% (4 out of 15) of the investigator-initiated trials and 95% (41 out of 43) of the industry-initiated trials. We excluded 21 RTCs as we could not use their QoL data for meta-analyses, either because of incomplete reporting (17 RCTs) or because of premature closure of the trial (4 RCTs). We included 37 RCTs with 10 581 patients; 21 RCTs were placebo controlled. Chemotherapy was given in 27 of the 37 RCTs. The median baseline haemoglobin (Hb) level was 10.1 g dl(-1); in 8 studies ESAs were stopped at Hb levels below 13 g dl(-1) and in 27 above 13 g dl(-1). For FACT-F, the mean difference (MD) was 2.41 (95% confidence interval (95% CI) 1.39-3.43; P<0.0001; 23 studies, n=6108) in all cancer patients and 2.81 (95% CI 1.73-3.90; P<0.0001; 19 RCTs, n=4697) in patients receiving chemotherapy, which was below the threshold (⩾3) for a clinically important difference (CID). Erythropoiesis-stimulating agents had a positive effect on anaemia-related symptoms (MD 4.09; 95% CI 2.37-5.80; P=0.001; 14 studies, n=2765) in all cancer patients and 4.50 (95% CI 2.55-6.45; P<0.0001; 11 RCTs, n=2436) in patients receiving chemotherapy, which was above the threshold (⩾4) for a CID. Of note, this effect persisted when we restricted the analysis to placebo-controlled RCTs in patients receiving chemotherapy. There was some evidence that the MDs for FACT-F were above the threshold for a CID in RCTs including cancer patients receiving chemotherapy with Hb levels below 12 g dl(-1) at baseline and in RCTs stopping ESAs at Hb levels above 13 g dl(-1). However, these findings for FACT-F were not confirmed when we restricted the analysis to placebo-controlled RCTs in patients receiving chemotherapy.Conclusions:In cancer patients, particularly those receiving chemotherapy, we found that ESAs provide a small but clinically important improvement in anaemia-related symptoms (FACT-An). For fatigue-related symptoms (FACT-F), the overall effect did not reach the threshold for a CID.British Journal of Cancer advance online publication, 17 April 2014; doi:10.1038/bjc.2014.171 www.bjcancer.com.
Resumo:
Sickle cell anemia (SCA) is a hemolytic disease characterized by the production of abnormal hemoglobin chains and distorted red blood cell morphology or sickling. "Sickle cell crisis" includes vaso-occlusive crisis, a plastic crisis, sequestration crisis, haemolytic crisis and often culminating in serious complications, organ damage and even sudden death. Post-mortem computed tomography (PMCT) findings of sickle cell disease have never been reported in literature. This case of sudden death from acute hemolytic crisis in SCA where post-mortem computed tomography (PMCT) and autopsy findings complemented each other, both revealing findings invisible to the other and both crucial to the case.
Resumo:
UNLABELLED We report on our patient (case 2) who experienced a first acute episode of thrombotic thrombocytopenic purpura (TTP) at the age of 19 years during her first pregnancy in 1976 which ended in a spontaneous abortion in the 30th gestational week. Treatment with red blood cell concentrates was implemented and splenectomy was performed. After having suffered from several TTP episodes in 1977, possibly mitigated by acetylsalicylic acid therapy, an interruption and sterilization were performed in 1980 in her second pregnancy thereby avoiding another disease flare-up. Her elder sister (case 1) had been diagnosed with TTP in 1974, also during her first pregnancy. She died in 1977 during her second pregnancy from a second acute TTP episode. DIAGNOSIS In 2013 a severe ADAMTS13 deficiency of <10% without detectable ADAMTS13 inhibitor was repeatedly found. Investigation of the ADAMTS13 gene showed that the severe ADAMTS13 deficiency was caused by compound heterozygous ADAMTS13 mutations: a premature stop codon in exon 2 (p.Q44X), and a missense mutation in exon 24 (p.R1060W) associated with low but measurable ADAMTS13 activity. CONCLUSION Genetic analysis of the ADAMTS13 gene is important in TTP patients of all ages if an ADAMTS13 inhibitor has been excluded.
Resumo:
The vast majority of chronic myeloid leukemia patients express a BCR-ABL1 fusion gene mRNA encoding a 210 kDa tyrosine kinase which promotes leukemic transformation. A possible differential impact of the corresponding BCR-ABL1 transcript variants e13a2 ("b2a2") and e14a2 ("b3a2") on disease phenotype and outcome is still a subject of debate. A total of 1105 newly diagnosed imatinib-treated patients were analyzed according to transcript type at diagnosis (e13a2, n=451; e14a2, n=496; e13a2+e14a2, n=158). No differences regarding age, sex, or Euro risk score were observed. A significant difference was found between e13a2 and e14a2 when comparing white blood cells (88 vs. 65 × 10(9)/L, respectively; P<0.001) and platelets (296 vs. 430 × 10(9)/L, respectively; P<0.001) at diagnosis, indicating a distinct disease phenotype. No significant difference was observed regarding other hematologic features, including spleen size and hematologic adverse events, during imatinib-based therapies. Cumulative molecular response was inferior in e13a2 patients (P=0.002 for major molecular response; P<0.001 for MR4). No difference was observed with regard to cytogenetic response and overall survival. In conclusion, e13a2 and e14a2 chronic myeloid leukemia seem to represent distinct biological entities. However, clinical outcome under imatinib treatment was comparable and no risk prediction can be made according to e13a2 versus e14a2 BCR-ABL1 transcript type at diagnosis. (clinicaltrials.gov identifier:00055874).