The interaction of P160 BCR with BCR-ABL gene products unique to Philadelphia chromosome leukemias


Autoria(s): Campbell, Martin Lee
Data(s)

01/01/1992

Resumo

The BCR gene is involved in the pathogenesis of Philadelphia chromosome-positive (Ph$\sp1$) leukemias. Typically, the 5$\sp\prime$ portion of BCR on chromosome 22 becomes fused to a 5$\sp\prime$ truncated ABL gene from chromosome 9 resulting in a chimeric BCR-ABL gene. To investigate the role of the BCR gene product, a number of BCR peptide sequences were used to generate anti-BCR antibodies for detection of BCR and BCR-ABL proteins. Since both BCR and ABL proteins have kinase activity, the anti-BCR antibodies were tested for their ability to immunoprecipitate BCR and BCR-ABL proteins from cellular lysates by use of an immunokinase assay. Antisera directed towards the C-terminal portions of P160 BCR, sequences not present in BCR-ABL proteins, were capable of co-immunoprecipitating P210 BCR-ABL from the Ph$\sp1$- positive cell line K562. Re-immunoprecipitation studies following complete denaturation showed that C-terminal BCR antisera specifically recognized P160 BCR but not P210 BCR-ABL. These and other results indicated the presence of a P160 BCR/P210 BCR-ABL protein complex in K562 cells. Experiments performed with Ph$\sp1$-positive ALL cells and uncultured Ph$\sp1$-positive patient white blood cells established the general presence of BCR/BCR-ABL protein complexes in BCR-ABL expressing cells. However, two cell lines derived from Ph$\sp1$-positive patients lacked P160 BCR/P210 BCR-ABL complexes. Lysates from one of these cell lines mixed with lysates from a cell line that expresses only P160 BCR failed to generate BCR/BCR-ABL protein complexes in vitro indicating that P160 BCR and P210 BCR-ABL do not simply oligomerize.^ Two-dimensional tryptic maps were performed on both BCR and BCR-ABL proteins labeled in vitro with $\sp{32}$P. These maps indicate that the autophosphorylation sites in BCR-ABL proteins are primarily located within BCR exon 1 sequences in both P210 and P185 BCR-ABL, and that P160 BCR is phosphorylated in trans in similar sites by the activated ABL kinase of both BCR-ABL proteins. These results provide strong evidence that P160 BCR serves as a target for the BCR-ABL oncoprotein.^ K562 cells, induced to terminally differentiate with the tumor promoter TPA, show a loss of P210 BCR-ABL kinase activity 12-18 hours after addition of TPA. This loss coincides with the loss of activity in P160 BCR/P210 BCR-ABL complexes but not with the loss of the P210 BCR-ABL, suggesting the existence of an inactive form of P210 BCR-ABL. However, a degraded BCR-ABL protein served as the kinase active form preferentially sequestered within the remaining BCR/BCR-ABL protein complex.^ The results described in this thesis form the basis for a model for BCR-ABL induced leukemias which is presented and discussed. ^

Identificador

http://digitalcommons.library.tmc.edu/dissertations/AAI9238496

Idioma(s)

EN

Publicador

DigitalCommons@The Texas Medical Center

Fonte

Texas Medical Center Dissertations (via ProQuest)

Palavras-Chave #Biology, Cell|Health Sciences, Pathology
Tipo

text