886 resultados para ROBOTS
Resumo:
Visual motion cues play an important role in animal and humans locomotion without the need to extract actual ego-motion information. This paper demonstrates a method for estimating the visual motion parameters, namely the Time-To-Contact (TTC), Focus of Expansion (FOE), and image angular velocities, from a sparse optical flow estimation registered from a downward looking camera. The presented method is capable of estimating the visual motion parameters in a complicated 6 degrees of freedom motion and in real time with suitable accuracy for mobile robots visual navigation.
Resumo:
This thesis describes a form of non-contact measurement using two dimensional hall effect sensing to resolve the location of a moving magnet which is part of a ‘magnetic spring’ type suspension system. This work was inspired by the field of Space Robotics, which currently relies on solid link suspension techniques for rover stability. This thesis details the design, development and testing of a novel magnetic suspension system with a possible application in space and terrestrial based robotics, especially when the robot needs to traverse rough terrain. A number of algorithms were developed, to utilize experimental data from testing, that can approximate the separation between magnets in the suspension module through observation of the magnetic fields. Experimental hardware was also developed to demonstrate how two dimensional hall effect sensor arrays could provide accurate feedback, with respects to the magnetic suspension modules operation, so that future work can include the sensor array in a real-time control system to produce dynamic ride control for space robots. The research performed has proven that two dimensional hall effect sensing with respects to magnetic suspension is accurate, effective and suitable for future testing.
Resumo:
John Searle’s Chinese Room Argument (CRA) purports to demonstrate that syntax is not sufficient for semantics, and, hence, because computation cannot yield understanding, the computational theory of mind, which equates the mind to an information processing system based on formal computations, fails. In this paper, we use the CRA, and the debate that emerged from it, to develop a philosophical critique of recent advances in robotics and neuroscience. We describe results from a body of work that contributes to blurring the divide between biological and artificial systems; so-called animats, autonomous robots that are controlled by biological neural tissue and what may be described as remote-controlled rodents, living animals endowed with augmented abilities provided by external controllers. We argue that, even though at first sight, these chimeric systems may seem to escape the CRA, on closer analysis, they do not. We conclude by discussing the role of the body–brain dynamics in the processes that give rise to genuine understanding of the world, in line with recent proposals from enactive cognitive science.
Resumo:
This paper presents a novel mobile sink area allocation scheme for consumer based mobile robotic devices with a proven application to robotic vacuum cleaners. In the home or office environment, rooms are physically separated by walls and an automated robotic cleaner cannot make a decision about which room to move to and perform the cleaning task. Likewise, state of the art cleaning robots do not move to other rooms without direct human interference. In a smart home monitoring system, sensor nodes may be deployed to monitor each separate room. In this work, a quad tree based data gathering scheme is proposed whereby the mobile sink physically moves through every room and logically links all separated sub-networks together. The proposed scheme sequentially collects data from the monitoring environment and transmits the information back to a base station. According to the sensor nodes information, the base station can command a cleaning robot to move to a specific location in the home environment. The quad tree based data gathering scheme minimizes the data gathering tour length and time through the efficient allocation of data gathering areas. A calculated shortest path data gathering tour can efficiently be allocated to the robotic cleaner to complete the cleaning task within a minimum time period. Simulation results show that the proposed scheme can effectively allocate and control the cleaning area to the robot vacuum cleaner without any direct interference from the consumer. The performance of the proposed scheme is then validated with a set of practical sequential data gathering tours in a typical office/home environment.
Resumo:
Sociable robots are embodied agents that are part of a heterogeneous society of robots and humans. They Should be able to recognize human beings and each other, and to engage in social, interactions. The use of a robotic architecture may strongly reduce the time and effort required to construct a sociable robot. Such architecture must have structures and mechanisms to allow social interaction. behavior control and learning from environment. Learning processes described oil Science of Behavior Analysis may lead to the development of promising methods and Structures for constructing robots able to behave socially and learn through interactions from the environment by a process of contingency learning. In this paper, we present a robotic architecture inspired from Behavior Analysis. Methods and structures of the proposed architecture, including a hybrid knowledge representation. are presented and discussed. The architecture has been evaluated in the context of a nontrivial real problem: the learning of the shared attention, employing an interactive robotic head. The learning capabilities of this architecture have been analyzed by observing the robot interacting with the human and the environment. The obtained results show that the robotic architecture is able to produce appropriate behavior and to learn from social interaction. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The issue of how children learn the meaning of words is fundamental to developmental psychology. The recent attempts to develop or evolve efficient communication protocols among interacting robots or Virtual agents have brought that issue to a central place in more applied research fields, such as computational linguistics and neural networks, as well. An attractive approach to learning an object-word mapping is the so-called cross-situational learning. This learning scenario is based on the intuitive notion that a learner can determine the meaning of a word by finding something in common across all observed uses of that word. Here we show how the deterministic Neural Modeling Fields (NMF) categorization mechanism can be used by the learner as an efficient algorithm to infer the correct object-word mapping. To achieve that we first reduce the original on-line learning problem to a batch learning problem where the inputs to the NMF mechanism are all possible object-word associations that Could be inferred from the cross-situational learning scenario. Since many of those associations are incorrect, they are considered as clutter or noise and discarded automatically by a clutter detector model included in our NMF implementation. With these two key ingredients - batch learning and clutter detection - the NMF mechanism was capable to infer perfectly the correct object-word mapping. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The main objective for this degree project is to implement an Application Availability Monitoring (AAM) system named Softek EnView for Fujitsu Services. The aim of implementing the AAM system is to proactively identify end user performance problems, such as application and site performance, before the actual end users experience them. No matter how well applications and sites are designed and nomatter how well they meet business requirements, they are useless to the end users if the performance is slow and/or unreliable. It is important for the customers to find out whether the end user problems are caused by the network or application malfunction. The Softek EnView was comprised of the following EnView components: Robot, Monitor, Reporter, Collector and Repository. The implemented system, however, is designed to use only some of these EnView elements: Robot, Reporter and depository. Robots can be placed at any key user location and are dedicated to customers, which means that when the number of customers increases, at the sametime the amount of Robots will increase. To make the AAM system ideal for the company to use, it was integrated with Fujitsu Services’ centralised monitoring system, BMC PATROL Enterprise Manager (PEM). That was actually the reason for deciding to drop the EnView Monitor element. After the system was fully implemented, the AAM system was ready for production. Transactions were (and are) written and deployed on Robots to simulate typical end user actions. These transactions are configured to run with certain intervals, which are defined collectively with customers. While they are driven against customers’ applicationsautomatically, transactions collect availability data and response time data all the time. In case of a failure in transactions, the robot immediately quits the transactionand writes detailed information to a log file about what went wrong and which element failed while going through an application. Then an alert is generated by a BMC PATROL Agent based on this data and is sent to the BMC PEM. Fujitsu Services’ monitoring room receives the alert, reacts to it according to the incident management process in ITIL and by alerting system specialists on critical incidents to resolve problems. As a result of the data gathered by the Robots, weekly reports, which contain detailed statistics and trend analyses of ongoing quality of IT services, is provided for the Customers.
Resumo:
Developing successful navigation and mapping strategies is an essential part of autonomous robot research. However, hardware limitations often make for inaccurate systems. This project serves to investigate efficient alternatives to mapping an environment, by first creating a mobile robot, and then applying machine learning to the robot and controlling systems to increase the robustness of the robot system. My mapping system consists of a semi-autonomous robot drone in communication with a stationary Linux computer system. There are learning systems running on both the robot and the more powerful Linux system. The first stage of this project was devoted to designing and building an inexpensive robot. Utilizing my prior experience from independent studies in robotics, I designed a small mobile robot that was well suited for simple navigation and mapping research. When the major components of the robot base were designed, I began to implement my design. This involved physically constructing the base of the robot, as well as researching and acquiring components such as sensors. Implementing the more complex sensors became a time-consuming task, involving much research and assistance from a variety of sources. A concurrent stage of the project involved researching and experimenting with different types of machine learning systems. I finally settled on using neural networks as the machine learning system to incorporate into my project. Neural nets can be thought of as a structure of interconnected nodes, through which information filters. The type of neural net that I chose to use is a type that requires a known set of data that serves to train the net to produce the desired output. Neural nets are particularly well suited for use with robotic systems as they can handle cases that lie at the extreme edges of the training set, such as may be produced by "noisy" sensor data. Through experimenting with available neural net code, I became familiar with the code and its function, and modified it to be more generic and reusable for multiple applications of neural nets.
Resumo:
O presente estudo foi baseado na introdução de robots no ensino da Matemática, mais propriamente no desenvolvimento da aprendizagem de tópicos e conceitos matemáticos em contexto de sala de aula. Os robots foram utilizados como elementos mediadores entre o aluno e a Matemática. A introdução da robótica na educação é aplicada com o objectivo de aumentar o rendimento e o grau de aprendizagem dos alunos. Este método de ensino é designado de Robótica Educacional ou Pedagógica. A investigação recaiu sobre o estudo das funções de 7º ano de escolaridade sendo desenvolvido em duas turmas. Seguindo uma metodologia qualitativa, procurarei descrever, analisar e compreender a actividade desenvolvida pelos alunos ao longo da realização das tarefas. O estudo foi baseado em três tarefas, uma de carácter introdutório e as outras duas recaindo sobre a noção de função e conceito de proporcionalidade como função. O desenvolvimento de tarefas através da utilização de robots desencadeou em grande parte dos alunos uma maior motivação e cooperação, levando ao que muitos autores chamam de conhecimento como construção. Este conhecimento é adquirido pelo aluno por meio de um trabalho activo de acção e reflexão. Os conceitos trabalhados são aprendidos de uma forma significativa e dificilmente será esquecida ao longo do seu percurso escolar.
Resumo:
SANTANA, André M.; SOUZA, Anderson A. S.; BRITTO, Ricardo S.; ALSINA, Pablo J.; MEDEIROS, Adelardo A. D. Localization of a mobile robot based on odometry and natural landmarks using extended Kalman Filter. In: INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, 5., 2008, Funchal, Portugal. Proceedings... Funchal, Portugal: ICINCO, 2008.
Resumo:
This thesis presents a new structure of robust adaptive controller applied to mobile robots (surface mobile robot) with nonholonomic constraints. It acts in the dynamics and kinematics of the robot, and it is split in two distinct parts. The first part controls the robot dynamics, using variable structure model reference adaptive controllers. The second part controls the robot kinematics, using a position controller, whose objective is to make the robot to reach any point in the cartesian plan. The kinematic controller is based only on information about the robot configuration. A decoupling method is adopted to transform the linear model of the mobile robot, a multiple-input multiple-output system, into two decoupled single-input single-output systems, thus reducing the complexity of designing the controller for the mobile robot. After that, a variable structure model reference adaptive controller is applied to each one of the resulting systems. One of such controllers will be responsible for the robot position and the other for the leading angle, using reference signals generated by the position controller. To validate the proposed structure, some simulated and experimental results using differential drive mobile robots of a robot soccer kit are presented. The simulator uses the main characteristics of real physical system as noise and non-linearities such as deadzone and saturation. The experimental results were obtained through an C++ program applied to the robot soccer kit of Microrobot team at the LACI/UFRN. The simulated and experimental results are presented and discussed at the end of the text
Resumo:
This work presents the localization and path planning systems for two robots: a non-instrumented humanoid and a slave wheeled robot. The localization of wheeled robot is made using odometry information and landmark detection. These informations are fused using a Extended Kalman Filter. The relative position of humanoid is acquired fusing (using another Kalman Filter) the wheeled robot pose with the characteristics of the landmark on the back of humanoid. Knowing the wheeled robot position and the humanoid relative position in relation to it, we acquired the absolute position of humanoid. The path planning system was developed to provide the cooperative movement of the two robots,incorporating the visibility restrictions of the robotic system