997 resultados para RESISTANT SURFACES
Resumo:
A new photocatalyst indicator ink based on methylene blue (MB) is described that allows the presence and activity of a thin (15 nm) photocatalytic film to be assessed in seconds. The ink is very stable (shelf life > 6 months) and the color change (blue to colorless) striking. The ink utilizes a sacrificial electron donor, glycerol, to trap the photogenerated holes, leaving the photogenerated electrons to react with MB to produce its. reduced, leuco, form (LMB). The efficacy of the MB ink is due to the presence of acid in its formulation, which curtails significantly. the otherwise usual, rapid reoxidation of LMB by ambient O-2.
Resumo:
After demonstrating the lack of effectiveness of standard antibiotics against the acquired antibiotic resistance of Bacillus cereus (NCTC 10989), Escherichia coli (NCTC 1186), and Staphylococcus aureus (ATCC 12715), we showed that the following natural substances were antibacterial against these resistant pathogens: cinnamon oil, oregano oil, thyme oil, carvacrol, (S)-perillaldehyde, 3,4-dihydroxybenzoic acid (beta-resorcylic acid), and 3,4-dihydroxyphenethylamine (dopamine). Exposure of the three pathogens to a dilution series of the test compounds showed that oregano oil was the most active substance. The oils and pure compounds exhibited exceptional activity against B. cereus vegetative cells, with oregano oil being active at nanogram, per milliliter levels. In contrast, activities against B. cereus spores were very low. Activities of the test compounds were in the following approximate order: oregano oil > thyme oil approximate to carvacrol > cinnamon oil > perillaldehyde > dopamine > beta-resorcylic acid. The order of susceptibilities of the pathogens to inactivation was as follows: B. cereus (vegetative) much greater than S. aureus approximate to E. coli much greater than B. cereus (spores). Some of the test substances may be effective against antibiotic-resistant bacteria in foods and feeds.