979 resultados para Quantum States
Resumo:
What type of probability theory best describes the way humans make judgments under uncertainty and decisions under conflict? Although rational models of cognition have become prominent and have achieved much success, they adhere to the laws of classical probability theory despite the fact that human reasoning does not always conform to these laws. For this reason we have seen the recent emergence of models based on an alternative probabilistic framework drawn from quantum theory. These quantum models show promise in addressing cognitive phenomena that have proven recalcitrant to modeling by means of classical probability theory. This review compares and contrasts probabilistic models based on Bayesian or classical versus quantum principles, and highlights the advantages and disadvantages of each approach.
Resumo:
TThis article considers the radical, sweeping changes to Australian copyright law wrought by the Australia–United States Free Trade Agreement 2004 (AUSFTA). It contends that the agreement will result in a “piracy of the public domain”. Under this new regime, copyright owners will be able to obtain greater monopoly profits at the expense of Australian consumers, libraries and research institutions, as well as intermediaries, such as Internet service providers. Part One observes that the copyright term extension in Australia to life of the author plus 70 years for works will have a negative economic and cultural impact — with Australia’s net royalty payments estimated to be up to $88 million higher per year. Part Two argues that the adoption of stronger protection of technological protection measures modelled upon the Digital Millennium Copyright Act 1998 (U.S.) will override domestic policy–making processes, such as the Phillips Fox Digital Agenda Review, and judicial pronouncements such as the Stevens v Sony litigation. Part Three questions whether the new safe harbours protection for Internet service providers will adversely affect the sale of Telstra. This article concludes that there is a need for judicial restraint in interpreting the AUSFTA. There is an urgent call for the Federal Government to pass ameliorating reforms — such as an open–ended defence of fair use and a mechanism for orphan works. There is a need for caution in negotiating future bilateral trade agreements — lest the multinational system for the protection of copyright law be undermined.
Resumo:
Aim The aim of this study was to analyse the effect of an 8-week multimodal physiotherapy programme (MPP), integrating physical land-based therapeutic exercise (TE), adapted swimming and health education, as a treatment for patients with chronic non-specific neck pain (CNSNP), on disability, general health/mental states and quality of life. Methods 175 CNSNP patients from a community-based centre were recruited to participate in this prospective study. Intervention: 60-minute session (30 minutes of land-based exercise dedicated to improving mobility, motor control, resistance and strengthening of the neck muscles, and 30 minutes of adapted swimming with aerobic exercise keeping a neutral neck position using a snorkel). Health education was provided using a decalogue on CNSNP and constant repetition of brief advice by the physiotherapist during the supervision of the exercises in each session. Study outcomes: primary: disability (Neck Disability Index); secondary: physical and mental health states and quality of life of patients (SF-12 and EuroQoL-5D respectively). Differences between baseline data and that at the 8-week follow-up were calculated for all outcome variables. Results Disability showed a significant improvement of 24.6% from a mean (SD) of 28.2 (13.08) at baseline to 16.88 (11.62) at the end of the 8-week intervention. All secondary outcome variables were observed to show significant, clinically relevant improvements with increase ranges between 13.0% and 16.3% from a mean of 0.70 (0.2) at baseline to 0.83 (0.2), for EuroQoL-5D, and from a mean of 40.6 (12.7) at baseline to 56.9 (9.5), for mental health state, at the end of the 8-week intervention. Conclusion After 8 weeks of a MPP that integrated land-based physical TE, health education and adapted swimming, clinically-relevant and statistically-significant improvements were observed for disability, physical and mental health states and quality of life in patients who suffer CNSNP. The clinical efficacy requires verification using a randomised controlled study design.
Resumo:
This report provides an overview of the tornado impact on the safe operation and shutdown of nuclear power plants in the United States. The motivation for this review stems from the damage and failure of the Fukushima nuclear power plant on March 11, 2011. That disaster warrants comparison of the safety measures in place within the global nuclear power industry.
Resumo:
Health policy interventions provide powerful tools for addressing health disparities. The Latino community is one of the fastest growing communities in the United States yet is largely underrepresented in government and advocacy efforts. This study includes 42 Latino adults (M age 5 45 years) who participated in focus group discussions and completed a brief questionnaire assessing their experiences with political health advocacy. Qualitative analyses revealed participants considered cancer a concern for the Latino community, but there was a lack of familiarity with political advocacy and its role in cancer control. Participants identified structural, practical, cultural, and contextual barriers to engaging in political health advocacy. This article presents a summary of the findings that suggest alternative ways to engage Latinos in cancer control advocacy.
Resumo:
Lattice-based cryptographic primitives are believed to offer resilience against attacks by quantum computers. We demonstrate the practicality of post-quantum key exchange by constructing cipher suites for the Transport Layer Security (TLS) protocol that provide key exchange based on the ring learning with errors (R-LWE) problem, we accompany these cipher suites with a rigorous proof of security. Our approach ties lattice-based key exchange together with traditional authentication using RSA or elliptic curve digital signatures: the post-quantum key exchange provides forward secrecy against future quantum attackers, while authentication can be provided using RSA keys that are issued by today's commercial certificate authorities, smoothing the path to adoption. Our cryptographically secure implementation, aimed at the 128-bit security level, reveals that the performance price when switching from non-quantum-safe key exchange is not too high. With our R-LWE cipher suites integrated into the Open SSL library and using the Apache web server on a 2-core desktop computer, we could serve 506 RLWE-ECDSA-AES128-GCM-SHA256 HTTPS connections per second for a 10 KiB payload. Compared to elliptic curve Diffie-Hellman, this means an 8 KiB increased handshake size and a reduction in throughput of only 21%. This demonstrates that provably secure post-quantum key-exchange can already be considered practical.
Resumo:
Research on development of efficient passivation materials for high performance and stable quantum dot sensitized solar cells (QDSCs) is highly important. While ZnS is one of the most widely used passivation material in QDSCs, an alternative material based on ZnSe which was deposited on CdS/CdSe/TiO2 photoanode to form a semi-core/shell structure has been found to be more efficient in terms of reducing electron recombination in QDSCs in this work. It has been found that the solar cell efficiency was improved from 1.86% for ZnSe0 (without coating) to 3.99% using 2 layers of ZnSe coating (ZnSe2) deposited by successive ionic layer adsorption and reaction (SILAR) method. The short circuit current density (Jsc) increased nearly 1-fold (from 7.25 mA/cm2 to13.4 mA/cm2), and the open circuit voltage (Voc) was enhanced by 100 mV using ZnSe2 passivation layer compared to ZnSe0. Studies on the light harvesting efficiency (ηLHE) and the absorbed photon-to-current conversion efficiency (APCE) have revealed that the ZnSe coating layer caused the enhanced ηLHE at wavelength beyond 500 nm and a significant increase of the APCE over the spectrum 400−550 nm. A nearly 100% APCE was obtained with ZnSe2, indicating the excellent charge injection and collection process in the device. The investigation on charge transport and recombination of the device has indicated that the enhanced electron collection efficiency and reduced electron recombination should be responsible for the improved Jsc and Voc of the QDSCs. The effective electron lifetime of the device with ZnSe2 was nearly 6 times higher than ZnSe0 while the electron diffusion coefficient was largely unaffected by the coating. Study on the regeneration of QDs after photoinduced excitation has indicated that the hole transport from QDs to the reduced species (S2−) in electrolyte was very efficient even when the QDs were coated with a thick ZnSe shell (three layers). For comparison, ZnS coated CdS/CdSe sensitized solar cell with optimum shell thickness was also fabricated, which generated a lower energy conversion efficiency (η = 3.43%) than the ZnSe based QDSC counterpart due to a lower Voc and FF. This study suggests that ZnSe may be a more efficient passivation layer than ZnS, which is attributed to the type II energy band alignment of the core (CdS/CdSe quantum dots) and passivation shell (ZnSe) structure, leading to more efficient electron−hole separation and slower electron recombination.
Resumo:
According to the United States Trade Representative (USTR), Ron Kirk, the Trans-Pacific Partnership is “an ambitious, next-generation, Asia-Pacific trade agreement that reflects U.S. priorities and values”.
Resumo:
In this paper we image the highly confined long range plasmons of a nanoscale metal stripe waveguide using quantum emitters. Plasmons were excited using a highly focused 633 nm laser beam and a specially designed grating structure to provide stronger incoupling to the desired mode. A homogeneous thin layer of quantum dots was used to image the near field intensity of the propagating plasmons on the waveguide. We observed that the photoluminescence is quenched when the QD to metal surface distance is less than 10 nm. The optimised spacer layer thickness for the stripe waveguides was found to be around 20 nm. Authors believe that the findings of this paper prove beneficial for the development of plasmonic devices utilising stripe waveguides.
Resumo:
A simple and rapid method of analysis for mercury ions (Hg2+) and cysteine (Cys) was developed with the use of graphene quantum dots (GQDs) as a fluorescent probe. In the presence of GQDs, Hg2+ cations are absorbed on their negatively charged surface by means of electrostatic interactions. Thus, the fluorescence (FL) of the GQDs would be significantly quenched as a result of the FL charge transfer, e.g. 92% quenching at 450 nm occurs for a 5 μmol L−1 Hg2+ solution. However, when Cys was added, a significant FL enhancement was observed (510% at 450 nm for a 8.0 μmol L−1 Cys solution), and Hg2+ combined with Cys rather than with the GQDs in an aqueous solution. This occurred because a strong metalsingle bondthiol bond formed, displacing the weak electrostatic interactions, and this resulted in an FL enhancement of the GQDs. The limits of detection (LOD) for Hg2+ and Cys were 0.439 nmol L−1 and 4.5 nmol L−1, respectively. Also, this method was used successfully to analyze Hg2+ and Cys in spiked water samples.
Resumo:
A novel, highly selective resonance light scattering (RLS) method was researched and developed for the analysis of phenol in different types of industrial water. An important aspect of the method involved the use of graphene quantum dots (GQDs), which were initially obtained from the pyrolysis of citric acid dissolved in aqueous solutions. The GQDs in the presence of horseradish peroxidase (HRP) and H2O2 were found to react quantitatively with phenol such that the RLS spectral band (310 nm) was quantitatively enhanced as a consequence of the interaction between the GQDs and the quinone formed in the above reaction. It was demonstrated that the novel analytical method had better selectivity and sensitivity for the determination of phenol in water as compared to other analytical methods found in the literature. Thus, trace amounts of phenol were detected over the linear ranges of 6.00×10−8–2.16×10−6 M and 2.40×10−6–2.88×10−5 M with a detection limit of 2.20×10−8 M. In addition, three different spiked waste water samples and two untreated lake water samples were analysed for phenol. Satisfactory results were obtained with the use of the novel, sensitive and rapid RLS method.
Resumo:
An efficient method for the analysis of hydroquinone at trace levels in water samples has been developed in the form of a fluorescent probe based on graphene quantum dots (GQDs). The analytical variable, fluorescence quenching, was generated from the formation of benzoquinone intermediates, which formed during the catalytic oxidation of hydroquinone by horseradish peroxidase (HRP). In general, the reaction mechanism involved hydroquinone, as an electron acceptor, which affected the surface state of GQDs via an electron transfer effect. The water-soluble GQDs were directly prepared by the pyrolysis of citric acid and with the use of the mentioned hybrid enzyme system, the detection limit for hydroquinone was as low as 8.4 × 10−8 M. Furthermore, this analysis was almost unaffected by other phenol and quinine compounds, such as phenol, resorcinol and other quinines, and therefore, the developed GQD method produced satisfactory results for the analysis of hydroquinone in several different lake water samples.
Resumo:
Approximate calculations are reported on pyrene within the PPP model Hamiltonian using a novel restricted CI scheme which employs both molecular orbital and valence bond techniques. Also reported are detailed full CI results of the PPP model on 2,7-dihydropyrene obtained using the valence bond method. Spectral studies, charge and spin density calculations in ground and excited states, and ring current calculations in the ground state of the molecules are presented. In pyrene, the calculated excitation energies are in good agreement with experiment. The closed structure pi-conjugated molecule pyrene appears to show smaller distortions from the ground state geometry compared with the open structure pi-conjugated molecule 2,7-dihydropyrene. The ground state equilibrium structure of 2,7-dihydropyrene can be viewed as two hexatriene molecules connected by a vinyl crosslink, as is evident from bond order and ring current calculations. This is consistent with the only Kekule resonant structure possible for this molecule.
Resumo:
We have measured the thermopower (S) of hole-doped LaMnO3 systems in order to see its dependence on the Mn4+ content as well as to investigate other crucial factors that determine S. We have carried out hole doping (creation of Mn4+ by two distinct means, namely, by the substitution of La by divalent cations such as Ca and Sr and by self-doping without aliovalent substitution). The thermopower is sensitive not only to the hole concentration but also to the process employed for hole doping, which we explain as arising from the differences in the nature of the hole-doped states. We also point out a general trend in the dependence of S on hole concentration at high temperatures (T> T-c), similar to that found in the normal-state thermopower of the cuprates.