957 resultados para QCD deconfinement phase transition
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In certain Mott-insulating dimerized antiferromagnets, triplet excitations of the paramagnetic phase display both three-particle and four-particle interactions. When such a magnet undergoes a quantum phase transition into a magnetically ordered state, the three-particle interaction becomes part of the critical theory provided that the lattice ordering wave vector is zero. One microscopic example is the staggered-dimer antiferromagnet on the square lattice, for which deviations from O(3) universality have been reported in numerical studies. Using both symmetry arguments and microscopic calculations, we show that a nontrivial cubic term arises in the relevant order-parameter quantum field theory, and we assess its consequences using a combination of analytical and numerical methods. We also present finite-temperature quantum Monte Carlo data for the staggered-dimer antiferromagnet which complement recently published results. The data can be consistently interpreted in terms of critical exponents identical to that of the standard O(3) universality class, but with anomalously large corrections to scaling. We argue that the cubic interaction of critical triplons, although irrelevant in two spatial dimensions, is responsible for the leading corrections to scaling due to its small scaling dimension.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We consider the modification of the Cahn-Hilliard equation when a time delay process through a memory function is taken into account. We then study the process of spinodal decomposition in fast phase transitions associated with a conserved order parameter. The introduced memory effect plays an important role to obtain a finite group velocity. Then, we discuss the constraint for the parameters to satisfy causality. The memory effect is seen to affect the dynamics of phase transition at short times and have the effect of delaying, in a significant way, the process of rapid growth of the order parameter that follows a quench into the spinodal region.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The phenomenon of Fermi acceleration is addressed for a dissipative bouncing ball model with external stochastic perturbation. It is shown that the introduction of energy dissipation (inelastic collisions of the particle with the moving wall) is a sufficient condition to break down the process of Fermi acceleration. The phase transition from bounded to unbounded energy growth in the limit of vanishing dissipation is characterized.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A new universal empirical function that depends on a single critical exponent (acceleration exponent) is proposed to describe the scaling behavior in a dissipative kicked rotator. The scaling formalism is used to describe two regimes of dissipation: (i) strong dissipation and (ii) weak dissipation. For case (i) the model exhibits a route to chaos known as period doubling and the Feigenbaum constant along the bifurcations is obtained. When weak dissipation is considered the average action as well as its standard deviation are described using scaling arguments with critical exponents. The universal empirical function describes remarkably well a phase transition from limited to unlimited growth of the average action. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Some dynamical properties for a Lorentz gas were studied considering both static and time-dependent boundaries. For the static case, it was confirmed that the system has a chaotic component characterized with a positive Lyapunov exponent. For the time-dependent perturbation, the model was described using a four-dimensional nonlinear map. The behaviour of the average velocity is considered in two different situations: (i) non-dissipative and (ii) dissipative dynamics. Our results confirm that unlimited energy growth is observed for the non-dissipative case. However, and totally new for this model, when dissipation via inelastic collisions is introduced, the scenario changes and the unlimited energy growth is suppressed, thus leading to a phase transition from unlimited to limited energy growth. The behaviour of the average velocity is described using scaling arguments. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We consider a dissipative oval-like shaped billiard with a periodically moving boundary. The dissipation considered is proportional to a power of the velocity V of the particle. The three specific types of power laws used are: (i) F proportional to-V; (ii) F proportional to-V-2 and (iii) F proportional to-V-delta with 1 < delta < 2. In the course of the dynamics of the particle, if a large initial velocity is considered, case (i) shows that the decay of the particle's velocity is a linear function of the number of collisions with the boundary. For case (ii), an exponential decay is observed, and for 1 < delta < 2, an powerlike decay is observed. Scaling laws were used to characterize a phase transition from limited to unlimited energy gain for cases (ii) and (iii). The critical exponents obtained for the phase transition in the case (ii) are the same as those obtained for the dissipative bouncer model. Therefore near this phase transition, these two rather different models belong to the same class of universality. For all types of dissipation, the results obtained allow us to conclude that suppression of the unlimited energy growth is indeed observed.
Resumo:
We present the qualitative differences in the phase transitions of the mono-mode Dicke model in its integrable and chaotic versions. These qualitative differences are shown to be connected to the degree of entanglement of the ground state correlations as measured by the linear entropy. We show that a first order phase transition occurs in the integrable case whereas a second order in the chaotic one. This difference is also reflected in the classical limit: for the integrable case the stable fixed point in phase space undergoes a Hopf type whereas the second one a pitchfork type bifurcation. The calculation of the atomic Wigner functions of the ground state follows the same trends. Moreover, strong correlations are evidenced by its negative parts. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)