944 resultados para Q-Oscillator Algebra
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Using an algebraic technique related to the SO (2, 1) group we construct the Green function for the potential ar2 + b(r sin θ)-2 + c(r cos θ)-2 + dr2 sin2θ + er2 cos2θ. The energy spectrum and the normalized wave functions are also obtained. © 1990.
Resumo:
In the mid-nineteenth century, french mathematicians Briot and Bouquet have proposed an intriguing graphical method for solving cubic equations "depressed" - the third degree equations that do not have the quadratic term. The proposal is simple geometric construction, though based on an ingenious algebra. We propose here the verification and testing graphical method through an instructional sequence using the software GeoGebra also present the ingenious algebraic development that resulted in this graphic method for determination of real roots of a cubic equation of the type x³ + px + q = 0 where p and q are real numbers. The method states that these solutions are summarized in the abscissas of the points of intersection of the circumference containing the origin and the center C (-q/2, 1-p/2) with the parable y = x².
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Topics include: Free groups and presentations; Automorphism groups; Semidirect products; Classification of groups of small order; Normal series: composition, derived, and solvable series; Algebraic field extensions, splitting fields, algebraic closures; Separable algebraic extensions, the Primitive Element Theorem; Inseparability, purely inseparable extensions; Finite fields; Cyclotomic field extensions; Galois theory; Norm and trace maps of an algebraic field extension; Solvability by radicals, Galois' theorem; Transcendence degree; Rings and modules: Examples and basic properties; Exact sequences, split short exact sequences; Free modules, projective modules; Localization of (commutative) rings and modules; The prime spectrum of a ring; Nakayama's lemma; Basic category theory; The Hom functors; Tensor products, adjointness; Left/right Noetherian and Artinian modules; Composition series, the Jordan-Holder Theorem; Semisimple rings; The Artin-Wedderburn Theorem; The Density Theorem; The Jacobson radical; Artinian rings; von Neumann regular rings; Wedderburn's theorem on finite division rings; Group representations, character theory; Integral ring extensions; Burnside's paqb Theorem; Injective modules.
Resumo:
Topics include: Rings, ideals, algebraic sets and affine varieties, modules, localizations, tensor products, intersection multiplicities, primary decomposition, the Nullstellensatz
Resumo:
A loop is said to be automorphic if its inner mappings are automorphisms. For a prime p, denote by A(p) the class of all 2-generated commutative automorphic loops Q possessing a central subloop Z congruent to Z(p) such that Q/Z congruent to Z(p) x Z(p). Upon describing the free 2-generated nilpotent class two commutative automorphic loop and the free 2-generated nilpotent class two commutative automorphic p-loop F-p in the variety of loops whose elements have order dividing p(2) and whose associators have order dividing p, we show that every loop of A(p) is a quotient of F-p by a central subloop of order p(3). The automorphism group of F-p induces an action of GL(2)(p) on the three-dimensional subspaces of Z(F-p) congruent to (Z(p))(4). The orbits of this action are in one-to-one correspondence with the isomorphism classes of loops from A(p). We describe the orbits, and hence we classify the loops of A(p) up to isomorphism. It is known that every commutative automorphic p-loop is nilpotent when p is odd, and that there is a unique commutative automorphic loop of order 8 with trivial center. Knowing A(p) up to isomorphism, we easily obtain a classification of commutative automorphic loops of order p(3). There are precisely seven commutative automorphic loops of order p(3) for every prime p, including the three abelian groups of order p(3).
Resumo:
In this study we address the problem of the response of a (electro)chemical oscillator towards chemical perturbations of different magnitudes. The chemical perturbation was achieved by addition of distinct amounts of trifluoromethanesulfonate (TFMSA), a rather stable and non-specifically adsorbing anion, and the system under investigation was the methanol electro-oxidation reaction under both stationary and oscillatory regimes. Increasing the anion concentration resulted in a decrease in the reaction rates of methanol oxidation and a general decrease in the parameter window where oscillations occurred. Furthermore, the addition of TFMSA was found to decrease the induction period and the total duration of oscillations. The mechanism underlying these observations was derived mathematically and revealed that inhibition in the methanol oxidation through blockage of active sites was found to further accelerate the intrinsic non-stationarity of the unperturbed system. Altogether, the presented results are among the few concerning the experimental assessment of the sensitiveness of an oscillator towards chemical perturbations. The universal nature of the complex chemical oscillator investigated here might be used for reference when studying the dynamics of other less accessible perturbed networks of (bio)chemical reactions.
Resumo:
This paper compares the effectiveness of the Tsallis entropy over the classic Boltzmann-Gibbs-Shannon entropy for general pattern recognition, and proposes a multi-q approach to improve pattern analysis using entropy. A series of experiments were carried out for the problem of classifying image patterns. Given a dataset of 40 pattern classes, the goal of our image case study is to assess how well the different entropies can be used to determine the class of a newly given image sample. Our experiments show that the Tsallis entropy using the proposed multi-q approach has great advantages over the Boltzmann-Gibbs-Shannon entropy for pattern classification, boosting image recognition rates by a factor of 3. We discuss the reasons behind this success, shedding light on the usefulness of the Tsallis entropy and the multi-q approach. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The extension of Boltzmann-Gibbs thermostatistics, proposed by Tsallis, introduces an additional parameter q to the inverse temperature beta. Here, we show that a previously introduced generalized Metropolis dynamics to evolve spin models is not local and does not obey the detailed energy balance. In this dynamics, locality is only retrieved for q = 1, which corresponds to the standard Metropolis algorithm. Nonlocality implies very time-consuming computer calculations, since the energy of the whole system must be reevaluated when a single spin is flipped. To circumvent this costly calculation, we propose a generalized master equation, which gives rise to a local generalized Metropolis dynamics that obeys the detailed energy balance. To compare the different critical values obtained with other generalized dynamics, we perform Monte Carlo simulations in equilibrium for the Ising model. By using short-time nonequilibrium numerical simulations, we also calculate for this model the critical temperature and the static and dynamical critical exponents as functions of q. Even for q not equal 1, we show that suitable time-evolving power laws can be found for each initial condition. Our numerical experiments corroborate the literature results when we use nonlocal dynamics, showing that short-time parameter determination works also in this case. However, the dynamics governed by the new master equation leads to different results for critical temperatures and also the critical exponents affecting universality classes. We further propose a simple algorithm to optimize modeling the time evolution with a power law, considering in a log-log plot two successive refinements.
Resumo:
Daily rhythmic processes are coordinated by circadian clocks, which are present in numerous central and peripheral tissues. In mammals, two circadian clocks, the food-entrainable oscillator (FEO) and methamphetamine-sensitive circadian oscillator (MASCO), are "black box" mysteries because their anatomical loci are unknown and their outputs are not expressed under normal physiological conditions. In the current study, the investigation of the timekeeping mechanisms of the FEO and MASCO in mice with disruption of all three paralogs of the canonical clock gene, Period, revealed unique and convergent findings. We found that both the MASCO and FEO in Per1(-/-)/Per2(-/-)/Per3(-/-) mice are circadian oscillators with unusually short (similar to 21 h) periods. These data demonstrate that the canonical Period genes are involved in period determination in the FEO and MASCO, and computational modeling supports the hypothesis that the FEO and MASCO use the same timekeeping mechanism or are the same circadian oscillator. Finally, these studies identify Per1(-/-)/Per2(-/-)/Per3(-/-) mice as a unique tool critical to the search for the elusive anatomical location(s) of the FEO and MASCO.