936 resultados para Protein and peptide drugs
Resumo:
The secretory and endocytic pathways of eukaryotic organelles consist of multiple compartments, each with a unique set of proteins and lipids. Specific transport mechanisms are required to direct molecules to defined locations and to ensure that the identity, and hence function, of individual compartments are maintained. The localisation of proteins to specific membranes is complex and involves multiple interactions. The recent dramatic advances in understanding the molecular mechanisms of membrane transport has been due to the application of a multi-disciplinary approach, intergrating membrane biology, genetics, imaging, protein and lipid biochemistry and structural biology. The aim of this review is to summarise the general principles of protein sorting in the secretory and endocytic pathways and to highlight the dynamic nature of these processes. The molecular mechanisms involved in this transport along the secretory and endocytic pathways are discussed along with the signals responsible for targeting proteins to different intracellular locations. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
In Australia people aged 65 years or older currently comprise 12.1% of the population. This has been estimated to rise to 24.2% by 2051. Until recently there has been relatively little research on alcohol and other drug use disorders among these individuals but, given the ageing population, this issue is likely to become of increasing importance and prominence. Epidemiological research shows a strong age-related decline in the prevalence of alcohol and other drug use disorders with age. Possible reasons for this include: age-related declines in the use and misuse of alcohol and other drugs; increased mortality among those with a lifetime history of alcohol and other drug use disorders; historical differences in exposure to and use of alcohol and other drugs. Despite the age-related decline in the prevalence of these disorders, they do still occur among those aged 65 years or older and, given historical changes in exposure to and use of illicit drugs, it likely that the prevalence of these disorders among older-aged individuals will rise. Specific issues faced by older-aged individuals with alcohol and other drug use problems are discussed. These include: interactions with prescribed medications, under-recognition and treatment of alcohol and drug problems, unintentional injury and social isolation. Finally, a brief discussion of treatment issues is provided.
Resumo:
This paper examines the influence of the chemical constituents of activated sludge and extracted extracellular polymeric substances (EPS) on the surface properties, hydrophobicity, surface charge (SC) and flocculating ability (FA) of activated sludge floes. Activated sludge samples from 7 different full-scale wastewater treatment plants were examined. Protein and humic substances were found to be the dominant polymeric compounds in the activated sludges and the extracted EPS, and they significantly affected the FA and surface properties, hydrophobicity and SC, of the sludge floes. The polymeric compounds proteins, humic substances and carbohydrates in the sludge floes and the extracted EPS contributed to the negative SC, but correlated negatively to the hydrophobicity of sludge floes. The quantity of protein and carbohydrate within the sludge and the extracted EPS was correlated positively to the FA of the sludge floes, while increased amounts of humic substances resulted in lower FA. In contrast, increased amounts of total extracted EPS had a negative correlation to FA. The results reveal that the quality and quantity of the polymeric compounds within the sludge floes is more informative, with respect to understanding the mechanisms involved in flocculation, than if only the extracted EPS are considered. This is an important finding as it indicates that extracting EPS may be insufficient to characterise the EPS. This is due to the low extraction efficiency and difficulties involved in the separation of EPS from other organic compounds. Correlations were observed between the surface properties and FA of the sludge floes., This confirms that the surface properties of the, sludge flocs play an important role in the bioflocculation process but that also other interactions like polymer entanglement are important. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
As with any variety of rice, red rice characteristics are subject to varietal differences, growing conditions, types of processing, and nutritional and rheological properties. This study determined the nutritional characteristics (centesimal composition and minerals) and paste viscosity properties of raw grains of four red rice genotypes (Tradicional MNAPB0405, MNACE0501 and MNACH0501) and the paste viscosity properties of pre-gelatinized flours obtained at different cooking times (20, 30 and 40 min). The main nutritional properties were correlated with the pasting properties of the pre-gelatinized flours. The samples showed differences in nutritional properties and paste viscosity. MNAPB0405 and MNACE0501 showed higher levels of fiber and fat and provided higher caloric energy than Tradicional and MNACH0501, which, in turn, showed higher levels of amylose. MNACH0501 showed higher peak viscosity (2402 cP), higher breakdown viscosity (696 cP) and a greater tendency to retrogradation (1510 cP), while Tradicional, MNAPB0405 and MNACE0501 had pasting profiles with peak viscosities varying between 855 and 1093 cP, breaking viscosity below 85 cP and retrogradation tendency between 376 and 1206 cP. The factors genotype and cooking time influenced the rheological behavior of pre-gelatinized flours, decreasing their pasting properties. The protein and amylose levels are correlated with the pasting properties and can be used as indicators of these properties in different genotypes of red rice, whether raw or processed into pre-gelatinized flours.
Resumo:
The present work involves the use of p-tert-butylcalix[4,6,8]arene carboxylic acid derivatives ((t)Butyl[4,6,8]CH2COOH) for selective extraction of hemoglobin. All three calixarenes extracted hemoglobin into the organic phase, exhibiting extraction parameters higher than 0.90. Evaluation of the solvent accessible positively charged amino acid side chains of hemoglobin (PDB entry 1XZ2) revealed that there are 8 arginine, 44 lysine and 30 histidine residues on the protein surface which may be involved in the interactions with the calixarene molecules. The hemoglobin-(t)Butyl[6]CH2COOH complex had pseudoperoxidase activity which catalysed the oxidation of syringaldazine in the presence of hydrogen peroxide in organic medium containing chloroform. The effect of pH, protein and substrate concentrations on biocatalysis was investigated using the hemoglobin-(t)Butyl[6]CH2COOH complex. This complex exhibited the highest specific activity of 9.92 x 10(-2) U mg protein(-1) at an initial pH of 7.5 in organic medium. Apparent kinetic parameters (V'(max), K'(m), k'(cat) and k'(cat)/K'(m)) for the pseudoperoxidase activity were determined in organic media for different pH values from a Michaelis-Menten plot. Furthermore, the stability of the protein-calixarene complex was investigated for different initial pH values and half-life (t(1/2)) values were obtained in the range of 1.96 and 2.64 days. Hemoglobin-calixarene complex present in organic medium was recovered in fresh aqueous solutions at alkaline pH, with a recovery of pseudoperoxidase activity of over 100%. These results strongly suggest that the use of calixarene derivatives is an alternative technique for protein extraction and solubilisation in organic media for biocatalysis.
Resumo:
Objective: This study was conducted to determine the association between magnesium (Mg), body composition and insulin resistance in 136 sedentary postmenopausal women, 50 to 77 years of age. Methods: Diabetics, hypertensives and women on hormonal replacement therapy were excluded and the remaining 74 were divided according to BMI≥25 (obese: OG) and BMI<25 kg/m2 (non-obese: NOG). Nutritional data disclosed that intakes were high for protein and saturated fat, low for carbohydrates, polyunsaturated fat and Mg and normal for the other nutrients, according to recommended dietary allowances (RDA). Mg values in red blood cells (RBC-Mg) and plasma (P-Mg), were determined, as were fasting glucose, and insulin levels, Homeostasis Model Assessment (HOMA), body mass index (BMI), body fat percent (BF %), abdominal fat (AF) and free fat mass (FFM). Results: RBC-Mg values were low in both groups when compared with normal values. There were significant differences in body composition parameters, HOMA and insulin levels, with higher basal insulin levels in OG. RBC-Mg was directly correlated with insulin, HOMA and FFM in both groups, according to Pearson correlations. HOMA in OG was also directly correlated with BMI, FFM and AF. In NOG, HOMA was only correlated with FFM. The low RBC-Mg levels observed were probably due to low Mg intake and to deregulation of factors that control Mg homeostasis during menopause. Conclusions: Both Mg deficit and obesity may independently lead to a higher risk for insulin resistance and cardiovascular disease.
Resumo:
Six open reading frames (ORFs) located on chromosome VII of Saccharomyces cerevisiae (YGR205w, YGR210c, YGR211w, YGR241c, YGR243w and YGR244c) were disrupted in two different genetic backgrounds using short-flanking homology (SFH) gene replacement. Sporulation and tetrad analysis showed that YGR211w, recently identified as the yeast ZPR1 gene, is an essential gene. The other five genes are non-essential, and no phenotypes could be associated to their inactivation. Two of these genes have recently been further characterized: YGR241c (YAP1802) encodes a yeast adaptor protein and YGR244c (LSC2) encodes the b-subunit of the succinyl-CoA ligase. For each ORF, a replacement cassette with long flanking regions homologous to the target locus was cloned in pUG7, and the cognate wild-type gene was cloned in pRS416.
Resumo:
Thiodicarb, a carbamate pesticide widely used on crops, may pose several environmental and health concerns. This study aimed to explore its toxicological profile on male rats using hematological, biochemical, histopathological, and flow cytometry markers. Exposed animals were dosed daily at 10, 20, or 40 mg/kg/body weight (group A, B, and C, respectively) during 30 d. No significant changes were observed in hematological parameters among all groups. After 10 d, a decrease of total cholesterol levels was noted in rats exposed to 40 mg/kg. Aspartate aminotransferase (AST) activity increased (group A at 20 d; groups A and B at 30 d) and alkaline phosphatase (ALP) (group B at 30 d) activity significantly reduced. At 30 d a decrease of some of the other evaluated parameters was observed with total cholesterol and urea levels in group A as well as total protein and creatinine levels in groups A and B. Histological results demonstrated multi-organ dose-related damage in thiodicarb-exposed animals, evidenced as hemorrhagic and diffuse vacuolation in hepatic tissue; renal histology showed disorganized glomeruli and tubular cell degeneration; spleen was ruptured with white pulp and clusters of iron deposits within red pulp; significant cellular loss was noted at the cortex of thymus; and degenerative changes were observed within testis. The histopathologic alterations were most prominent in the high-dose group. Concerning flow cytometry studies, an increase of lymphocyte number, especially T lymphocytes, was seen in blood samples from animals exposed to the highest dose. Taken together, these results indicate marked systemic organ toxicity in rats after subacute exposure to thiodicarb.
Resumo:
OBJECTIVE To evaluate the consumption of ultra-processed foods, its associated factors, and its influence on nutrient intake in young adults.METHODS In 2004-2005, the individuals belonging to the Pelotas birth cohort of 1982 were identified for a home interview. A total of 4,297 individuals were interviewed and 4,202 individuals were included in the study (follow-up rate of 77.4%). Diet was assessed using a questionnaire on dietary intake and the percentage of daily caloric intake attributed to ultra-processed foods as well as the intake of macro- and micronutrients were estimated. The association between cohort characteristics and the consumption of ultra-processed foods was assessed using linear regression. Analysis of variance and Pearson’s Chi-square test were used to evaluate the association between the quintiles of the consumption of ultra-processed food, nutrient intake and adequacy of nutrient intake, respectively.RESULTS The consumption of ultra-processed foods corresponded to 51.2% of the total caloric intake. The consumption of ultra-processed foods was higher among women, individuals with higher education, and individuals who were never poor and eutrophic. The increased consumption of ultra-processed foods was positively correlated with the consumption of fat, cholesterol, sodium, iron, calcium, and calories (p < 0.001) and was negatively correlated with the consumption of carbohydrates, protein, and dietary fiber (p < 0.001).CONCLUSIONS The high consumption of ultra-processed foods and its positive correlation with the intake of sodium, cholesterol, and fats underscores the need to perform interventions aimed at decreasing the intake of this food group.
Resumo:
Liquid crystalline cellulosic-based solutions described by distinctive properties are at the origin of different kinds of multifunctional materials with unique characteristics. These solutions can form chiral nematic phases at rest, with tuneable photonic behavior, and exhibit a complex behavior associated with the onset of a network of director field defects under shear. Techniques, such as Nuclear Magnetic Resonance (NMR), Rheology coupled with NMR (Rheo-NMR), rheology, optical methods, Magnetic Resonance Imaging (MRI), Wide Angle X-rays Scattering (WAXS), were extensively used to enlighten the liquid crystalline characteristics of these cellulosic solutions. Cellulosic films produced by shear casting and fibers by electrospinning, from these liquid crystalline solutions, have regained wider attention due to recognition of their innovative properties associated to their biocompatibility. Electrospun membranes composed by helical and spiral shape fibers allow the achievement of large surface areas, leading to the improvement of the performance of this kind of systems. The moisture response, light modulated, wettability and the capability of orienting protein and cellulose crystals, opened a wide range of new applications to the shear casted films. Characterization by NMR, X-rays, tensile tests, AFM, and optical methods allowed detailed characterization of those soft cellulosic materials. In this work, special attention will be given to recent developments, including, among others, a moisture driven cellulosic motor and electro-optical devices.
Resumo:
Recent advances in vacuum sciences and applications are reviewed. Novel optical interferometer cavity devices enable pressure measurements with ppm accuracy. The innovative dynamic vacuum standard allows for pressure measurements with temporal resolution of 2 ms. Vacuum issues in the construction of huge ultra-high vacuum devices worldwide are reviewed. Recent advances in surface science and thin films include new phenomena observed in electron transport near solid surfaces as well as novel results on the properties of carbon nanomaterials. Precise techniques for surface and thin-film characterization have been applied in the conservation technology of cultural heritage objects and recent advances in the characterization of biointerfaces are presented. The combination of various vacuum and atmospheric-pressure techniques enables an insight into the complex phenomena of protein and other biomolecule conformations on solid surfaces. Studying these phenomena at solid-liquid interfaces is regarded as the main issue in the development of alternative techniques for drug delivery, tissue engineering and thus the development of innovative techniques for curing cancer and cardiovascular diseases. A review on recent advances in plasma medicine is presented as well as novel hypotheses on cell apoptosis upon treatment with gaseous plasma. Finally, recent advances in plasma nanoscience are illustrated with several examples and a roadmap for future activities is presented.
Resumo:
A strain of Pleurotus ostreatus was grown in tomato pomace as sole carbon source for production of laccase. The culture of P. ostreatus revealed a peak of laccase activity (147 U/L of fermentation broth) on the 4th day of culture with a specific activity of 2.8 U/mg protein. Differential chromatographic behaviour of laccase was investigated on affinity chromatographic matrices containing either urea, acetamide, ethanolamine or IDA as affinity ligands. Laccase exhibited retention on such affinity matrices and it was purified on a Sepharose 6B-BDGE-urea column with final enzyme recoveries of about 60%, specific activity of 6.0 and 18.0 U/mg protein and purification factors in the range of 14-46. It was also possible to demonstrate that metal-free laccase did not adsorb to Sepharose 6B-BDGE-urea column which suggests that adsorption of native laccase on this affinity matrix was apparently due to the specific interaction of carbonyl groups available on the matrix with the active site Cu (II) ions of laccase. The kinetic parameters (V (max), K (m) , K (cat), and K (cat)/K (m) ) of the purified enzyme for several substrates were determined as well as laccase stability and optimum pH and temperature of enzyme activity. This is the first report describing the production of laccase from P. ostreatus grown on tomato pomace and purification of this enzyme based on affinity matrix containing urea as affinity ligand.
Resumo:
Two groups of patients undergoing hemodialysis (HD) maintenance were evaluated for their antibody response to non-structural c100/3 protein and structural core protein of hepatitis C virus (HCV). Forty-six patients (Group 1) never presented liver abnormalities during HD treatment, while 52 patients (Group 2) had either current or prior liver enzyme elevations. Prevalence rates of 32.6% and 41.3% were found for anti-c100/3 and anti-HCV core antibodies, respectively, in patients with silent infections (Group 1). The rate of anti-c100/3 in patients of Group 2 was 71.15% and reached 86.5% for anti-HCV core antibodies. The recognition of anti-c100/3 and anti-core antibodies was significantly higher in Group 2 than in Group 1. A line immunoassay composed of structural and non-structural peptides was used as a confirmation assay. HBV infection, measured by the presence of anti-HBc antibodies, was observed in 39.8% of the patients. Six were HBsAg chronic carriers and 13 had naturally acquired anti-HBs antibodies. The duration of HD treatment was correlated with anti-HCV positivity. A high prevalence of 96.7% (Group 2) was found in patients who underwent more than 5 years of treatment. Our results suggest that anti-HCV core ELISA is more accurate for detecting HCV infection than anti-c100/3. Although the risk associated with the duration of HD treatment and blood transfusion was high, additional factors such as a significant non-transfusional spread of HCV seems to play a role as well. The identification of infective patients by more sensitive methods for HCV genome detection should help to control the transmission of HCV in the unit under study.
Resumo:
Dissertação apresentada para a obtenção do Grau de Mestre em Genética Molecular e Biomedicina, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em BioOrgânica