912 resultados para Power take-off
Resumo:
Due to knowledge gaps in relation to urban stormwater quality processes, an in-depth understanding of model uncertainty can enhance decision making. Uncertainty in stormwater quality models can originate from a range of sources such as the complexity of urban rainfall-runoff-stormwater pollutant processes and the paucity of observed data. Unfortunately, studies relating to epistemic uncertainty, which arises from the simplification of reality are limited and often deemed mostly unquantifiable. This paper presents a statistical modelling framework for ascertaining epistemic uncertainty associated with pollutant wash-off under a regression modelling paradigm using Ordinary Least Squares Regression (OLSR) and Weighted Least Squares Regression (WLSR) methods with a Bayesian/Gibbs sampling statistical approach. The study results confirmed that WLSR assuming probability distributed data provides more realistic uncertainty estimates of the observed and predicted wash-off values compared to OLSR modelling. It was also noted that the Bayesian/Gibbs sampling approach is superior compared to the most commonly adopted classical statistical and deterministic approaches commonly used in water quality modelling. The study outcomes confirmed that the predication error associated with wash-off replication is relatively higher due to limited data availability. The uncertainty analysis also highlighted the variability of the wash-off modelling coefficient k as a function of complex physical processes, which is primarily influenced by surface characteristics and rainfall intensity.
Resumo:
The approach adopted for investigating the relationship between rainfall characteristics and pollutant wash-off process is commonly based on the use of parameters which represent the entire rainfall event. This does not permit the investigation of the influence of rainfall characteristics on different sectors of the wash-off process such as first flush where there is a high pollutant wash-off load at the initial stage of the runoff event. This research study analysed the influence of rainfall characteristics on the pollutant wash-off process using two sets of innovative parameters by partitioning wash-off and rainfall characteristics. It was found that the initial 10% of the wash-off process is closely linked to runoff volume related rainfall parameters including rainfall depth and rainfall duration while the remaining part of the wash-off process is primarily influenced by kinetic energy related rainfall parameters, namely, rainfall intensity. These outcomes prove that different sectors of the wash-off process are influenced by different segments of a rainfall event.
Resumo:
The validity of using rainfall characteristics as lumped parameters for investigating the pollutant wash-off process such as first flush occurrence is questionable. This research study introduces an innovative concept of using sector parameters to investigate the relationship between the pollutant wash-off process and different sectors of the runoff hydrograph and rainfall hyetograph. The research outcomes indicated that rainfall depth and rainfall intensity are two key rainfall characteristics which influence the wash-off process compared to the antecedent dry period. Additionally, the rainfall pattern also plays a critical role in the wash-off process and is independent of the catchment characteristics. The knowledge created through this research study provides the ability to select appropriate rainfall events for stormwater quality treatment design based on the required treatment outcomes such as the need to target different sectors of the runoff hydrograph or pollutant species. The study outcomes can also contribute to enhancing stormwater quality modelling and prediction in view of the fact that conventional approaches to stormwater quality estimation is primarily based on rainfall intensity rather than considering other rainfall parameters or solely based on stochastic approaches irrespective of the characteristics of the rainfall event.
Resumo:
During the Senate Inquiry into 'milk price wars' in 2011, Senator Nick Xenophon accused the Australian Competition and Consumer Commission (ACCC) of being 'less effective than a toothless Chihuahua'. This follows the ACCC's lack of action regarding the reported abuse of market power of Australia's supermarket duopoly, where an extensive inquiry into the competitiveness of retail prices in 2008 found grocery retailing to be 'workably competitive' despite numerous claims to the contrary. How can farmers' submissions to the inquiry that cite market abuse be reconciled with the ACCC's finding that all is well in the food supply chain? Following an in-depth examination of 53 farmer submissions to the inquiry, we conclude that the findings of the ACCC are commensurate with the neoliberal economisation of the political sphere, where commercial entities 'legitimately' govern beyond their corporate boundaries, often using disciplinary measures that were once exclusive to governments. We argue that such clear structural inequalities between farmers and major corporations is reason to re-regulate markets and reinsert a stronger role for government to 'level the playing field'.
Resumo:
A microgrid may contain a large number of distributed generators (DGs). These DGs can be either inertial or non-inertial, either dispatchable or non-dispatchable. Moreover, the DGs may operate in plug and play fashion. The combination of these various types of operation makes the microgrid control a challenging task, especially when the microgrid operates in an autonomous mode. In this paper, a new control algorithm for converter interfaced (dispatchable) DG is proposed which facilitates smooth operation in a hybrid microgrid containing inertial and non-inertial DGs. The control algorithm works satisfactorily even when some of the DGs operate in plug and play mode. The proposed strategy is validated through PSCAD simulation studies.
Resumo:
It has become more and more demanding to investigate the impacts of wind farms on power system operation as ever-increasing penetration levels of wind power have the potential to bring about a series of dynamic stability problems for power systems. This paper undertakes such an investigation through investigating the small signal and transient stabilities of power systems that are separately integrated with three types of wind turbine generators (WTGs), namely the squirrel cage induction generator (SCIG), the doubly fed induction generator (DFIG), and the permanent magnet generator (PMG). To examine the effects of these WTGs on a power system with regard to its stability under different operating conditions, a selected synchronous generator (SG) of the well-known Western Electricity Coordinating Council (WECC three-unit nine-bus system and an eight-unit 24-bus system is replaced in turn by each type of WTG with the same capacity. The performances of the power system in response to the disturbances are then systematically compared. Specifically, the following comparisons are undertaken: (1) performances of the power system before and after the integration of the WTGs; and (2) performances of the power system and the associated consequences when the SCIG, DFIG, or PMG are separately connected to the system. These stability case studies utilize both eigenvalue analysis and dynamic time-domain simulation methods.
Resumo:
Wind power is one of the world's major renewable energy sources, and its utilization provides an important contribution in helping solve the energy problems of many countries. After nearly 40 years of development, China's wind power industry now not only manufactures its own massive six MW turbines but also has the largest capacity in the world with a national output of 50 million MW•h in 2010 and set to rise by eight times of that amount by 2020. This paper investigates this development route by analyzing relevant academic literature, statistics, laws and regulations, policies and research and industry reports. The main drivers of the development in the industry are identified as technologies, turbines, wind farm construction, pricing mechanism and government support systems, each of which is also divided into different stages with distinctive features. A systematic review of these aspects provides academics and practitioners with a better understanding of the history of the wind power industry in China and reasons for its rapid development with a view to enhancing progress in wind power development both in China and the world generally.
Resumo:
Digital tablets have been identified as a tool for enabling blended learning and supporting online teaching and learning. A small scale trial was undertaken to assess the effectiveness of this technology when applied to power engineering education. Critical findings and experiences gained from this trial, including potential benefits, presentation techniques and the resulting student feedback are presented in this paper.
Resumo:
This paper proposes a new method for stabilizing disturbed power systems using wide area measurement and FACTS devices. The approach focuses on both first swing and damping stability of power systems following large disturbances. A two step control algorithm based on Lyapunov Theorem is proposed to be applied on the controllers to improve the power systems stability. The proposed approach is simulated on two test systems and the results show significant improvement in the first swing and damping stability of the test systems.
Resumo:
In this paper an approach is presented for identification of a reduced model for coherent areas in power systems using phasor measurement units to represent the inter-area oscillations of the system. The generators which are coherent in a wide range of operating conditions form the areas in power systems and the reduced model is obtained by representing each area by an equivalent machine. The reduced nonlinear model is then identified based on the data obtained from measurement units. The simulation is performed on three test systems and the obtained results show high accuracy of identification process.
Resumo:
This paper demonstrates power management and control of DERs in an autonomous MG. The paper focuses on the control and performance of converter-interfaced DERs in voltage controlled mode. Several case studies are considered for a MG based on the different types of loads supplied by the MG (i.e. balanced three-phase, unbalanced, single-phase and harmonic loads). DERs are controlled by adjusting the voltage magnitude and angle in their converter output through droop control, in a decentralized concept. Based on this control method, DERs can successfully share the total demand of the MG in the presence of any type of loads. This includes proper total power sharing, unbalanced power sharing as well as harmonic power sharing, depending on the load types. The efficacy of the proposed power control, sharing and management among DERs in a microgrid is validated through extensive simulation studies using PSCAD/EMTDC.
Resumo:
Voltage drop at network peak hours is a significant power quality problem in Low Voltage (LV) distribution feeders. Recently, voltage rise due to high penetration of Photovoltaic cells (PVs) has been creating a new power quality problem during noon periods. In this paper, a voltage control strategy is proposed for the household installed PVs to regulate the voltage along the LV feeder. For this purpose, each PV is controlled to exchange reactive power with the grid. A droop control method is utilized to coordinate the reactive power exchange of each PV. The proposed method is a decentralized local voltage support since it is based on only local measurements and does not require any communication with other PVs. The required converter and filter structure and control algorithms are proposed to ensure the dynamic performance of the system. The study focuses on 3-phase PVs. The network is studied at network peak and off-peak periods, separately. The efficacy of the proposed voltage support concept is verified through numerical and dynamic analyses with MATLAB and PSCAD/EMTDC.
Resumo:
Royal commissions are approached not as exercises in legitimation and closure but as sites of struggle that are heavily traversed by power holders yet are open to the voices of alternative and unofficial social groups, social movements, and individuals. Three case studies are discussed that highlight the hegemony of the legal methodology and discourse that dominate many inquiries. The first case, involving a single-case miscarriage inquiry, involves a man who was accused, convicted, and served a prison sentence for the murder of his wife. Nineteen years following the murder another man confessed to the crime. The official inquiry found that nothing had gone wrong in the criminal justice process; it had operated as it should. Thus, in the face of evidence that the criminal justice process may be flawed, the discursive strategy became one of silence; no explanation was offered except for the declaration that nothing had gone wrong. The fallibility of the criminal justice system was thus hidden from public view. The second case study examines the Wood Royal Commission into corruption charges within the NSW Police Service. The royal commission revealed a bevy of police misconduct offenses including process corruption, improper associations, theft, and substance abuse, among others. The author discusses the ways in which the other criminal justice players, the judiciary and prosecuting attorneys, emerge only briefly as potential ethical agents in relation to police misconduct and corruption and then abruptly disappear again. Yet, these other players are absolved of any responsibility for police misconduct. The third case study involves a spin-off inquiry into the facts surrounding the Leigh Leigh rape and murder case. This case illustrates how official inquires can seek to exclude non-traditional viewpoints and methodologies; in this case, the views of a feminist criminologist. The third case also illustrates how the adversarial process within the legal system allows those with power to subjugate the viewpoints of others through the legitimate use of cross-examination. These three case studies reveal how official inquiries tend to speak from an “idealized conception of justice” and downplay any viewpoint that questions this idealized version of the truth.
Resumo:
A novel intelligent online demand side management system is proposed for peak load management. The method also regulates the network voltage, balances the power in three phases and coordinates the battery storage discharge within the network. This method uses low cost controllers with low bandwidth two-way communication installed in costumers' premises and at distribution transformers to manage the peak load while maximizing customer satisfaction. A multi-objective decision making process is proposed to select the load(s) to be delayed or controlled. The efficacy of the proposed control system is verified through an event-based developed simulation in Matlab.
Resumo:
In this chapter, the role of State Estimation (SE) in smart power grids is presented. The trend of SE error with respect to the increasing of the smart grids implementation investigated. The observability analysis as a prior task of SE is demonstrated and an analytical method to consider the impedance values of the branches is developed and discussed by examples. Since most principles of smart power grids are appropriate to distribution networks, the Distribution SE (DSE)considering load correlation is argued and illustrated by an example. The main features of smart grid SE, which is here named as “Smart Distributed SE” (SDSE), are discussed. Some characteristics of proposed SDES are distributed, hybrid, multi-micro grid and islanding support, Harmonic State Estimation (HSE), observability analysis and restore, error processing, and network parameter estimation. Distribution HSE (DHSE) and meter placement for SDSE are also presented.