908 resultados para Posterior parietal cortex
Resumo:
Edges are important cues defining coherent auditory objects. As a model of auditory edges, sound on- and offset are particularly suitable to study their neural underpinnings because they contrast a specific physical input against no physical input. Change from silence to sound, that is onset, has extensively been studied and elicits transient neural responses bilaterally in auditory cortex. However, neural activity associated with sound onset is not only related to edge detection but also to novel afferent inputs. Edges at the change from sound to silence, that is offset, are not confounded by novel physical input and thus allow to examine neural activity associated with sound edges per se. In the first experiment, we used silent acquisition functional magnetic resonance imaging and found that the offset of pulsed sound activates planum temporale, superior temporal sulcus and planum polare of the right hemisphere. In the planum temporale and the superior temporal sulcus, offset response amplitudes were related to the pulse repetition rate of the preceding stimulation. In the second experiment, we found that these offset-responsive regions were also activated by single sound pulses, onset of sound pulse sequences and single sound pulse omissions within sound pulse sequences. However, they were not active during sustained sound presentation. Thus, our data show that circumscribed areas in right temporal cortex are specifically involved in identifying auditory edges. This operation is crucial for translating acoustic signal time series into coherent auditory objects.
Resumo:
Generalized linear mixed models with semiparametric random effects are useful in a wide variety of Bayesian applications. When the random effects arise from a mixture of Dirichlet process (MDP) model, normal base measures and Gibbs sampling procedures based on the Pólya urn scheme are often used to simulate posterior draws. These algorithms are applicable in the conjugate case when (for a normal base measure) the likelihood is normal. In the non-conjugate case, the algorithms proposed by MacEachern and Müller (1998) and Neal (2000) are often applied to generate posterior samples. Some common problems associated with simulation algorithms for non-conjugate MDP models include convergence and mixing difficulties. This paper proposes an algorithm based on the Pólya urn scheme that extends the Gibbs sampling algorithms to non-conjugate models with normal base measures and exponential family likelihoods. The algorithm proceeds by making Laplace approximations to the likelihood function, thereby reducing the procedure to that of conjugate normal MDP models. To ensure the validity of the stationary distribution in the non-conjugate case, the proposals are accepted or rejected by a Metropolis-Hastings step. In the special case where the data are normally distributed, the algorithm is identical to the Gibbs sampler.
Resumo:
The role of irregular cortical firing in neuronal computation is still debated, and it is unclear how signals carried by fluctuating synaptic potentials are decoded by downstream neurons. We examined in vitro frequency versus current (f-I) relationships of layer 5 (L5) pyramidal cells of the rat medial prefrontal cortex (mPFC) using fluctuating stimuli. Studies in the somatosensory cortex show that L5 neurons become insensitive to input fluctuations as input mean increases and that their f-I response becomes linear. In contrast, our results show that mPFC L5 pyramidal neurons retain an increased sensitivity to input fluctuations, whereas their sensitivity to the input mean diminishes to near zero. This implies that the discharge properties of L5 mPFC neurons are well suited to encode input fluctuations rather than input mean in their firing rates, with important consequences for information processing and stability of persistent activity at the network level.
Resumo:
Cortical dynamics can be imaged at high spatiotemporal resolution with voltage-sensitive dyes (VSDs) and calcium-sensitive dyes (CaSDs). We combined these two imaging techniques using epifluorescence optics together with whole cell recordings to measure the spatiotemporal dynamics of activity in the mouse somatosensory barrel cortex in vitro and in the supragranular layers in vivo. The two optical signals reported distinct aspects of cortical function. VSD fluorescence varied linearly with membrane potential and was dominated by subthreshold postsynaptic potentials, whereas the CaSD signal predominantly reflected local action potential firing. Combining VSDs and CaSDs allowed us to monitor the synaptic drive and the spiking activity of a given area at the same time in the same preparation. The spatial extent of the two dye signals was different, with VSD signals spreading further than CaSD signals, reflecting broad subthreshold and narrow suprathreshold receptive fields. Importantly, the signals from the dyes were differentially affected by pharmacological manipulations, stimulation strength, and depth of isoflurane anesthesia. Combined VSD and CaSD measurements can therefore be used to specify the temporal and spatial relationships between subthreshold and suprathreshold activity of the neocortex.
Resumo:
Excitatory neurons at the level of cortical layer 4 in the rodent somatosensory barrel field often display a strong eccentricity in comparison with layer 4 neurons in other cortical regions. In rat, dendritic symmetry of the 2 main excitatory neuronal classes, spiny stellate and star pyramid neurons (SSNs and SPNs), was quantified by an asymmetry index, the dendrite-free angle. We carefully measured shrinkage and analyzed its influence on morphological parameters. SSNs had mostly eccentric morphology, whereas SPNs were nearly radially symmetric. Most asymmetric neurons were located near the barrel border. The axonal projections, analyzed at the level of layer 4, were mostly restricted to a single barrel except for those of 3 interbarrel projection neurons. Comparing voxel representations of dendrites and axon collaterals of the same neuron revealed a close overlap of dendritic and axonal fields, more pronounced in SSNs versus SPNs and considerably stronger in spiny L4 neurons versus extragranular pyramidal cells. These observations suggest that within a barrel dendrites and axons of individual excitatory cells are organized in subcolumns that may confer receptive field properties such as directional selectivity to higher layers, whereas the interbarrel projections challenge our view of barrels as completely independent processors of thalamic input.
Resumo:
It is widely accepted that peripheral trauma such as soft tissue injuries can trigger dystonia, although little is known about the underlying mechanism. Because peripheral injury only rarely appears to elicit dystonia, a predisposing vulnerability in cortical motor areas might play a role. Using single and paired-pulse pulse transcranial magnetic stimulation, we evaluated motor cortex excitability of a hand muscle in a patient with peripherally induced foot dystonia, in her brother with craniocervical dystonia, and in her unaffected sister, and compared their results to those from a group of normal subjects. In the patient with peripherally induced dystonia, we found a paradoxical intracortical facilitation at short interstimulus intervals of 3 and 5 milliseconds, at which regular intracortical inhibition (ICI) occurred in healthy subjects. These findings suggest that the foot dystonia may have been precipitated as the result of a preexisting abnormality of motor cortex excitability. Furthermore, the abnormality of ICI in her brother and sister indicates that altered motor excitability may be a hereditary predisposition. The study demonstrates that the paired-pulse technique is a useful tool to assess individual vulnerability, which can be particularly relevant when the causal association between trauma and dystonia is less evident.
Resumo:
RATIONALE: High levels of calcium independent phospholipase A2 (iPLA2) are present in certain regions of the brain, including the cerebral cortex, striatum, and cerebellum (Ong et al. 2005). OBJECTIVES: The present study was carried out to elucidate a possible role of the enzyme in the motor system. METHODS: The selective iPLA2 inhibitor bromoenol lactone (BEL), the nonselective PLA2 inhibitor methyl arachidonyl fluorophosphonate (MAFP), and an antisense oligonucleotide were used to interfere with iPLA2 activity in various components of the motor system. Control animals received injections of carrier (phosphate buffered saline, PBS) at the same locations. The number of vacuous chewing movements (VCM) was counted from 1 to 14 days after injection. RESULTS: Rats that received BEL and high-dose MAFP injections in the striatum, thalamus, and motor cortex, but not the cerebellum, showed significant increase in VCM, compared to those injected with PBS at these locations. BEL-induced VCM were blocked by intramuscular injections of the anticholinergic drug, benztropine. Increased VCM was also observed after intrastriatal injection of antisense oligonucleotide to iPLA2. The latter caused a decrease in striatal iPLA2 levels, confirming a role of decreased enzyme activity in the appearance of VCM. CONCLUSIONS: These results suggest an important role for iPLA2 in the cortex-striatum-thalamus-cortex circuitry. It is postulated that VCM induced by iPLA2 inhibition may be a model of human parkinsonian tremor.
Resumo:
The aim of the current study was to examine the effect of theta burst repetitive transcranial magnetic stimulation (rTMS) on the blood oxygenation level-dependent (BOLD) activation during repeated functional magnetic resonance imaging (fMRI) measurements. Theta burst rTMS was applied over the right frontal eye field in seven healthy subjects. Subsequently, repeated fMRI measurements were performed during a saccade-fixation task (block design) 5, 20, 35, and 60 min after stimulation. We found that theta burst rTMS induced a strong and long-lasting decrease of the BOLD signal response of the stimulated frontal eye field at 20 and 35 min. Furthermore, less pronounced alterations of the BOLD signal response with different dynamics were found for remote oculomotor areas such as the left frontal eye field, the pre-supplementary eye field, the supplementary eye field, and both parietal eye fields. Recovery of the BOLD signal changes in the anterior remote areas started earlier than in the posterior remote areas. These results show that a) the major inhibitory impact of theta burst rTMS occurs directly in the stimulated area itself, and that b) a lower effect on remote, oculomotor areas can be induced.
Resumo:
Alzheimer's disease (AD) is known to cause a variety of disturbances of higher visual functions that are closely related to the neuropathological changes. Visual association areas are more affected than primary visual cortex. Additionally, there is evidence from neuropsychological and imaging studies during rest or passive visual stimulation that the occipitotemporal pathway is less affected than the parietal pathway. Our goal was to investigate functional activation patterns during active visuospatial processing in AD patients and the impact of local cerebral atrophy on the strength of functional activation. Fourteen AD patients and fourteen age-matched controls were measured with functional magnetic resonance imaging (fMRI) while they performed an angle discrimination task. Both groups revealed overlapping networks engaged in angle discrimination including the superior parietal lobule (SPL), frontal and occipitotemporal (OTC) cortical regions, primary visual cortex, basal ganglia, and thalamus. The most pronounced differences between the two groups were found in the SPL (more activity in controls) and OTC (more activity in patients). The differences in functional activation between the AD patients and controls were partly explained by the differences in individual SPL atrophy. These results indicate that parietal dysfunction in mild to moderate AD is compensated by recruitment of the ventral visual pathway. We furthermore suggest that local cerebral atrophy should be considered as a covariate in functional imaging studies of neurodegenerative disorders.
Resumo:
In the anti-saccade paradigm, subjects are instructed not to make a reflexive saccade to an appearing lateral target but to make an intentional saccade to the opposite side instead. The inhibition of reflexive saccade triggering is under the control of the dorsolateral prefrontal cortex (DLPFC). The critical time interval at which this inhibition takes place during the paradigm, however, is not exactly known. In the present study, we used single-pulse transcranial magnetic stimulation (TMS) to interfere with DLPFC function in 15 healthy subjects. TMS was applied over the right DLPFC either 100 ms before the onset of the visual target (i.e. -100 ms), at target onset (i.e. 0 ms) or 100 ms after target onset (i.e. +100 ms). Stimulation 100 ms before target onset significantly increased the percentage of anti-saccade errors to both sides, while stimulation at, or after, target onset had no significant effect. All three stimulation conditions had no significant influence on saccade latency of correct or erroneous anti-saccades. These findings show that the critical time interval at which the DLPFC controls the suppression of a reflexive saccade in the anti-saccade paradigm is before target onset. In addition, the results suggest the view that the triggering of correct anti-saccades is not under direct control of the DLPFC.
Resumo:
This study compared periapical (PA) radiography and cone-beam tomography (CBT) for preoperative diagnosis in posterior maxillary teeth of consecutive patients referred for possible apical surgery. Images were concurrently analyzed by an oral radiologist and an endodontist to reach consensus in interpretation of the radiographic findings. The final material included 37 premolars and 37 molars with a total of 156 roots. CBT showed significantly more lesions (34%, p < 0.001) than PA radiography. Detecting lesions with PA radiography alone was most difficult in second molars or in roots in close proximity to the maxillary sinus floor. Additional findings were seen significantly more frequently in CBT compared with PA radiography including expansion of lesions into the maxillary sinus (p < 0.001), sinus membrane thickening (p < 0.001), and missed canals (p < 0.05). The present study highlights the advantages of using CBT for preoperative treatment planning in maxillary posterior teeth with apical pathology.
Resumo:
OBJECTIVE: Immediate and early loading of dental implants can simplify treatment and increase overall patient satisfaction. The purpose of this 3-year prospective randomized-controlled multicenter study was to assess the differences in survival rates and bone level changes between immediately and early-loaded implants with a new chemically modified surface (SLActive). This investigation shows interim results obtained after 5 months. MATERIAL AND METHODS: Patients > or =18 years of age missing at least one tooth in the posterior maxilla or mandible were enrolled in the study. Following implant placement, patients received a temporary restoration either on the day of surgery (immediate loading) or 28-34 days after surgery (early loading); restorations consisted of single crowns or two to four unit fixed dental prostheses. Permanent restorations were placed 20-23 weeks following surgery. The primary efficacy variable was change in bone level (assessed by standardized radiographs) from baseline to 5 months; secondary variables included implant survival and success rates. RESULTS: A total of 266 patients were enrolled (118 males and 148 females), and a total of 383 implants were placed (197 and 186 in the immediate and early loading groups, respectively). Mean patient age was 46.3+/-12.8 years. After 5 months, implant survival rates were 98% in the immediate group and 97% in the early group. Mean bone level change from baseline was 0.81+/-0.89 mm in the immediate group and 0.56+/-0.73 mm in the early group (P<0.05). Statistical analysis revealed a significant center effect (P<0.0001) and a significant treatment x center interaction (P=0.008). CONCLUSIONS: The results suggested that Straumann implants with an SLActive can be used predictably in time-critical (early or immediate) loading treatment protocols when appropriate patient selection criteria are observed. The mean bone level changes observed from baseline to 5 months (0.56 and 0.81 mm) corresponded to physiological observations from other studies, i.e., were not clinically significant. The presence of a significant center effect and treatment x center interaction indicated that the differences in bone level changes between the two groups were center dependent.
Resumo:
Background: The goal of this study was to retrospectively analyze a cohort of 136 patients who underwent dental implant placement in the posterior maxilla at the University of Connecticut Health Center to assess and identify predictors for implant failure in the posterior maxilla. Methods: Data were retrieved from patient charts to identify subjects older than 21 years of age who received dental implant(s) in the posterior maxilla. Patients without a postoperative baseline radiograph were excluded. A recall radiograph was taken 3 to 6 months after implant placement. If there was no recall radiograph, the subject was contacted for a recall visit that included a clinical evaluation and radiographs to determine the implant status. Based on a univariate screening, variables considered potential implant failure predictors included gender, diabetes, smoking, implant length, implant diameter, membrane use, sinus-elevation technique, and surgical complications. These parameters were further assessed, and a multivariable logistic regression was performed with implant failure as a dependant variable. All tests of significance were evaluated at the 0.05 error level. Results: Two hundred seventy-three implants were placed in the posterior maxilla. Fourteen implants failed (early and late failures combined), resulting in a 94.9% overall survival rate. The survival rates for the sinus-elevation group and native bone group were 92.2% and 96.7%, respectively (P = 0.090). Based on the multivariable analysis, sinus floor-elevation procedures were not associated with increased risk for implant failure (P = 0.702). In contrast, smoking and surgical complications had a statistically significant effect on implant failure; the odds ratios for implant failure were 6.4 (P = 0.025) and 8.2 (P = 0.004), respectively. Conclusion: Sinus-elevation procedures with simultaneous or staged implant placement do not increase the risk for implant failure, whereas smoking and surgical complications markedly increase the risk for implant failure.
Resumo:
Over the last decade, increasing evidence of cognitive functions of the cerebellum during development and learning processes could be ascertained. Posterior fossa malformations such as cerebellar hypoplasia or Joubert syndrome are known to be related to developmental problems in a marked to moderate extent. More detailed analyses reveal special deficits in attention, processing speed, visuospatial functions, and language. A study about Dandy Walker syndrome states a relationship of abnormalities in vermis lobulation with developmental problems. Further lobulation or volume abnormalities of the cerebellum and/or vermis can be detected in disorders as fragile X syndrome, Downs's syndrome, William's syndrome, and autism. Neuropsychological studies reveal a relation of dyslexia and attention deficit disorder with cerebellar functions. These functional studies are supported by structural abnormalities in neuroimaging in these disorders. Acquired cerebellar or vermis atrophy was found in groups of children with developmental problems such as prenatal alcohol exposure or extreme prematurity. Also, focal lesions during childhood or adolescence such as cerebellar tumor or stroke are related with neuropsychological abnormalities, which are most pronounced in visuospatial, language, and memory functions. In addition, cerebellar atrophy was shown to be a bad prognostic factor considering cognitive outcome in children after brain trauma and leukemia. In ataxia teleangiectasia, a neurodegenerative disorder affecting primarily the cerebellar cortex, a reduced verbal intelligence quotient and problems of judgment of duration are a hint of the importance of the cerebellum in cognition. In conclusion, the cerebellum seems to play an important role in many higher cognitive functions, especially in learning. There is a suggestion that the earlier the incorrect influence, the more pronounced the problems.
Resumo:
BACKGROUND: The nonoperative treatment of posterior tibial tendon insufficiency (PTTI) can lead to unsatisfactory functional results. Short-term results are available but the impact on the evolution of the deformity is not known. To address these problems, a new brace for the flexible Stage II deformity was developed, and midterm followup was obtained. MATERIALS AND METHOD: In a prospective case series, eighteen patients (mean age 64.2 years; range, 31 to 82; four male, 14 female) with flexible Stage II PTTI were fitted with the new custom-molded foot orthosis. At latest followup of a mean of 61.4 (range, 20 to 87) months, functional results were assessed with the AOFAS ankle hindfoot score and clinical or radiographic progression was recorded. RESULTS: The score improved significantly from a mean of 56 points (range, 20 to 64) to a mean of 82 points (range, 64 to 100, p < 0.001). Three patients (3/18, 16%) had a clinical progression to a fixed deformity (Stage III) and a radiographic increase of their deformity. All the other patients were satisfied with the brace's comfort and noted an improvement in their mobility. Complications were seen in three patients (3/18, 16%), and consisted of the development of calluses. CONCLUSION: The "shell brace" is a valuable option for nonoperative treatment of the flexible Stage II PTTI. Hindfoot flexibility was conserved throughout the observation period in all but three patients. Functional outcome and patient acceptance was above average. Problems were few, and closely associated with a progression to a fixed, Stage III deformity.