903 resultados para Polycrystalline gold
Resumo:
Introduction: The aim of this study was to evaluate the accuracy of two imaging methods in diagnosing apical periodontitis (AP) using histopathological findings as a gold standard. Methods: The periapex of 83 treated or untreated roots of dogs` teeth was examined using periapical radiography (PR), cone-beam computed tomography (CBCT) scans, and histology. Sensitivity, specificity, predictive values, and accuracy of PR and CBCT diagnosis were calculated. Results: PR detected AP in 71% of roots, a CBCT scan detected AP in 84%, and AP was histologically diagnosed in 93% (p = 0.001). Overall, sensitivity was 0.77 and 0.91 for PR and CBCT, respectively. Specificity was 1 for both. Negative predictive value was 0.25 and 0.46 for PR and CBCT, respectively. Positive predictive value was 1 for both. Diagnostic accuracy (true positives + true negatives) was 0.78 and 0.92 for PR and CBCT (p = 0.028), respectively. Conclusion: A CBCT scan was more sensitive in detecting AP compared with PR, which was more likely to miss AP when it was still present. (J Endod 2009;35:1009-1012)
Resumo:
The immobilization of gold nanoparticles (Au NPs) on silica is made possible by the functionalization of the silica surfaces with organosilanes. Au NPs could only be stabilized and firmly attached to silica-support surfaces that were previously modified with amino groups. Au NPs could not be stabilized on bare silica surfaces and most of the NPs were then found in the solution. The metal-support interactions before and after the Au NP formation, observed by X-ray absorption fine structure spectroscopy (XAFS), indicate a stronger interaction of gold-(III) ions with amino-modified silica surfaces than with the silanol groups in bare silica. An amino-modified, silica-based, magnetic support was used to prepare an active Au NP catalyst for the chemoselective oxidation of alcohols, a reaction of great interest for the fine chemical industry.
Resumo:
The magnetic behavior of polycrystalline yttrium orthoferrite was studied from the experimental and theoretical points of view. Magnetization measurements up to 170 kOe were carried out on a single-phase YFeO3 sample synthesized from heterobimetallic alkoxides. The complex interplay between weak-ferromagnetic and antiferromagnetic interactions, observed in the experimental M(H) curves, was successfully simulated by locally minimizing the magnetic energy of two interacting Fe sublattices. The resulting values of exchange field (H-E = 5590 kOe), anisotropy field (H-A = 0.5 kOe) and Dzyaloshinsky-Moriya antisymmetric field (H-D = 149 kOe) are in good agreement with previous reports on this system. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
By performing at) initio density functional theory (DFT) calculations and electronic transport simulations based on the OFT nonequilibrium Green`s functions method we investigate how the conformational changes of a benzene-1,4-dithiol molecule bonded to gold affect the molecular transport as the electrodes are separated from each other. In particular we consider the full evolution of the stretching process until the Junction breaking point and compare results obtained with a standard semilocal exchange and correlation functional to those computed with a self-interaction corrected method. We conclude that the inclusion of self-interaction corrections is fundamental for describing both the molecule conductance and its stability against conformational fluctuations.
Resumo:
Copper and gold nanowires under tension evolve to form linear atomic chains (LACs), and the study and understanding of this evolution is an important subject for the development of nanocontacts. Here we study the differences and similarities between copper and gold nanowires (NWs) under stress along the [111] crystallographic direction until their rupture using tight-binding molecular dynamics. In both metals, the first significant rearrangement occurs due to one inside atom that goes to the NW` surface. In an attempt to better understand this effect, for both metals we also consider hollow NW`s where the inside atoms were excluded after the initial relaxation to create single-wall NW`s (SWNWs). The dynamical evolution of these SWNWs provides insight on the formation of the constriction that evolves to form LACs. Studying the calculated forces supported by the NW`s we show that SWNWs can sustain larger forces before the first major rearrangement in the copper and gold when compared to the original NW`s.
Resumo:
A funerary gold mask from the Museum of Sican, Ferranafe, Peru was analyzed in 30 different areas using a portable equipment using energy-dispersive X-ray fluorescence. It was deduced from the measurements that the main sheet of the mask and the majority of the pendants have a similar composition and are made of tumbaga, which means a poor gold alloy enriched at the surface by depletion gilding, and have a similar `equivalent` gilding thickness of about 5 mu m. The nose, also on tumbaga, has different composition and a thickness of about 8 mu m. The clamps are on gilded or on silvered copper. The red pigment dispersed on the surface of the mask is cinnabar. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Radon and gamma radiation level measurements were carried out inside the La Carolina mine, one of the oldest gold mining camps of southern South America, which is open for touristic visits nowadays. CR-39 track-etch detectors and thermoluminescent dosimeters of natural CaF(2) and LiF TLD-100 were exposed at 14 points along the mine tunnels in order to estimate the mean (222)Rn concentration and the ambient dose equivalent during the summer season (November 2008 to February 2009). The values for the (222)Rn concentration at each monitoring site ranged from 1.8 +/- 0.1 kBq m(-3) to 6.0 +/- 0.5 kBq m(-3), with a mean value of 4.8 kBq m(-3), indicating that these measurements exceed in about three times the upper action level recommended by ICRP for workplaces. The correlations between radon and gamma radiation levels inside the mine were also investigated. Effective doses due to (222)Rn and gamma rays inside the mine were determined, resulting in negligible values to tourists. Considering the effective dose to the mine tourist guides, values exceeding 20 mSv of internal contribution to the effective doses can be reached, depending on the number of working hours inside the mine. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The control of morphology and coating of metal surfaces is essential for a number of organic electronic devices including photovoltaic cells and sensors. In this study, we monitor the functionalization of gold surfaces with 11-mercaptoundecanoic acid (MUA, HS(CH(2))(10)CO(2)H) and cysteamine, aiming at passivating the surfaces for application in surface plasmon resonance (SPR) biosensors. Using polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS), cyclic voltammetry, atomic force microscopy and quartz crystal microbalance, we observed a time-dependent organization process of the adsorbed MUA monolayer with alkyl chains perpendicular to the gold surface. Such optimized condition for surface passivation was obtained with a systematic search for experimental parameters leading to the lowest electrochemical signal of the functionalized gold electrode. The ability to build supramolecular architectures was also confirmed by detecting with PM-IRRAS the adsorption of streptavidin on the MUA-functionalized gold. As the approaches used for surface functionalization and its verification with PM-IRRAS are generic, one may now envisage monitoring the fabrication of tailored electrodes for a variety of applications.
Resumo:
The control of size and shape of metallic nanoparticles is a fundamental goal in nanochemistry, and crucial for applications exploiting nanoscale properties of materials. We present here an approach to the synthesis of gold nanoparticles mediated by glucose oxidase (GOD) immobilized on solid substrates using the Layer-by-Layer (LbL) technique. The LbL films contained four alternated layers of chitosan and poly(styrene sulfonate) (PSS), with GOD in the uppermost bilayer adsorbed on a fifth chitosan layer: (chitosan/PSS)(4)/(chitosan/GOD). The films were inserted into a solution containing gold salt and glucose, at various pHs. Optimum conditions were achieved at pH 9, producing gold nanoparticles of ca. 30 nm according to transmission electron microscopy. A comparative study with the enzyme in solution demonstrated that the synthesis of gold nanoparticles is more efficient using immobilized GOD. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We describe the development of a label free method to analyze the interactions between Ca(2+) and the porcine S100A12 protein immobilized on polyvinyl butyral (PVB). The modified gold electrodes were characterized using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and surface plasmon resonance (SPR) techniques. SEM analyses of PVB and PVB-S100A12 showed a heterogeneous distribution of PVB spherules on gold surface. EIS and CV measurements have shown that redox probe reactions on the modified gold electrodes were partially blocked due the adsorption of PVB-S100A12, and confirm the existence of a positive response of the immobilized S100Al2 to the presence of calcium ions. The biosensor exhibited a wide linear response to Ca(2+) concentrations ranging from 12.5 to 200 mM. The PVB-S100A12 seems to be bound to the gold electrode surface by physical adsorption: we observed an increase of 1184.32 m degrees in the SPR angle after the adsorption of the protein on the PVB surface (in an indication that 9.84 ng of S100A12 are adsorbed per mm(2) of the Au-PVB electrode), followed by a further increase of 581.66 m degrees after attachment of the Ca(2+) ions. In addition, no SPR response is obtained for non-specific ions. These studies might be useful as a platform for the design of new reusable and sensitive biosensing devices that could find use in the clinical applications. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Important concentrations of tourmaline occur as gold-bearing stratiform tourmalinites and in mineralized quartz-tourmaline veins at the Tapera Grande and Quartzito gold prospects in the Mesoproterozoic Serra do Itaberaba Group, central Ribeira Belt (Sao Paulo State, SE Brazil). The main rock types in both prospects constitute the volcanic-sedimentary Morro da Pedra Preta Formation, which formed in a submarine back-arc setting. At Tapera Grande, the volcanic-sedimentary sequence is composed of metabasic and metavolcaniclastic rocks, graphitic and sulfur-rich metapelites, banded iron formation, metandesite, metarhyolite, calcsilicates, tourmalinites and metahydrothermalites derived from mafic and felsic rocks. The Mesoproterozoic rocks at Quartzito prospect are lithologically similar but they have been affected by Neoproterozoic faulting and shearing and by the emplacement of granitic rocks, resulting in the formation of tourmaline-rich quartz-carbonate veins with gold and base metal mineralization. We conducted a chemical and B-isotope study of tourmalines in order to better understand the origin of the stratiform tourmalinites in the Morro da Pedra Preta Formation and their relationship with gold mineralization. The overall range of delta(11)B values obtained for the tourmalinite and vein tourmalines is between - 15%. and -5 parts per thousand, with the tourmalinites failing at the low end of this range (-15 to -8 parts per thousand). Such values are typical for continental crust and inconsistent with a primary marine boron signature as expected from the submarine-exhalative model for the gold prospects. We conclude from this that tourmaline formed or recrystallized from crustal fluids related to the amphibolite-grade metamorphism which affected the Serra do Itaberaba Group and that gold deposition occurred syn- to post-peak metamorphism by phase immiscibility, as attested by fluid inclusions in Tapera Grande tourmalinite tourmaline and quartz. The vein-hosted tourmalines at Quartzito have isotopically variable boron signatures, with heavier delta(11)B values of -5 parts per thousand to -8 parts per thousand for acicular green tourmalines and lighter values (-15 parts per thousand to -7 parts per thousand for light blue, Ti-firee tourmaline from quartz-carbonate veins). We attribute the heavier boron to fluids derived from the volcano-sedimentary rocks of marine affinity whereas the lighter boron was contributed by crustal fluids related to the granitoids or metasediments in the continental crust. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
The Araes gold deposit, located in eastern Mato Grosso State, central Brazil, is hosted in Neoproterozoic volcanosedimentary rocks of the Paraguay belt, which formed during collision of the Amazonian craton and the Rio Apa block. Ar-40/Ar-39 geochronology and Pb and S isotopic analyses constrain the timing and sources of mineralization. Three biotite flakes from two samples of metavolcanic host rock yield Ar-40/Ar-39 plateau ages between 5941 and 531 Ma, interpreted as cooling ages following regional metamorphism. Clay minerals from a hydrothermal alteration zone yield an Ar-40/Ar-39 integrated age of 503 +/- 3 Ma. Galena grains from ore-bearing veins yield values of Pb-206/(204)pb from 17.952 to 18.383, Pb-207/Pb-204 from 15.156 to 15.811, and Pb-208/Pb-204 from 38.072 to 39.681. Pyrite grains from ore-bearing veins yield values of Pb-206/Pb-204 from 18.037 to 18.202, Pb-207/Pb-204 from 15.744 to 15.901., and Pb-208/(204)pb from 38.338 to 38.800. Pb isotope variations may be explained in terms of mixing a less radiogenic lead component (mu similar to 8.4) from mafic and ultramafic basement host-rocks (Nova Xavantina metavolcanosedimentary rocks) and a more radiogenic lead component (mu similar to 9.2) probably derived from supracrustal rocks (Cuiaba sedimentary groups). Sulfur isotope compositions are homogeneous, with delta S-34 values ranging from -1.1 parts per thousand to 0.9 parts per thousand (galena) and -0.7 parts per thousand to 0.9 parts per thousand (pyrite), suggesting a mantle-derived reservoir for the mineralizing solutions. Based on the Ar, Pb, and S isotope data, we suggest that the precious metals were remobilized from metavolcanic host rocks by hydrothermal solutions during Brasilide-Panafrican regional metamorphism. The Arabs gold deposit probably formed during a late stage of the orogeny, coeval with other mineralization events in the Paraguay Belt.
Morphology and composition of gold in a lateritic profile, Fazenda Pison ""Garimpo"", Amazon, Brazil
Resumo:
This study describes the morphological evolution of gold grains in a lateritic weathering profile in an equatorial rainforest climate. Primary sources of gold are quartz veins associated with shallow granophyric intrusion. Gold grains were found in fresh ore, saprolite, transition zones, ferruginous duricrust, red latosol, and yellow latosol. Irregularly shaped grains predominate, with smaller proportions of dendritic and prismatic forms. Gold grains are weathered in the uppermost 10 m of the regolith. Mean gold grain size is maximum in the duricrust (> 125 mu m) and decreases progressively upward into the yellow latosol (<90 mu m). Voids and corrosion pits appear on grain surfaces, and progressive rounding is observed from the bottom of the profile to the top. Gold grains can be classified as either homogeneous or zoned with respect to their chemical composition. Homogeneous grains contain 2-15% Ag (mean 8.3%). Zoned grains have more variable Ag contents; grain cores have means of approximately 10% or 23% Ag, with Ag-poor zones of approximately 3.7% Ag along internal discontinuities and/or outer rims. Formation of Ag-poor rims is due to preferential depletion of silver. Processes responsible for duricrust formation may preserve some grains as large aggregates, but subsequent transformation into latosol further modifies them. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A novel approach of using a gold disc microelectrode to analyze sweat samples for copper ions by anodic square wave stripping voltammetry (SW stripping voltammetry) is described Sweat was collected from the lower back of four subjects after physical exercise and the sample volume required for the determinations was 100 mu L. Under the optimized conditions the calibration plot was linear over the range 1-100 mu mol L(-1) Cu(II) with a limit of detection of 0 25 mu mol L(-1) The precision was evaluated by carrying out five replicate measurements in a 1 mu mol L(-1) Cu(II) solution and the standard deviation was found to be 1 5% Measurements were performed by inserting the microelectrode into sweat drops and Cu(II) concentrations in the analyzed samples ranged from 09 to 28 mu mol L(-1) Values obtained by the proposed voltammetric method agreed well with those found using graphite furnace atomic absorption spectroscopy (GFAAS) (C) 2010 Elsevier B V All rights reserved
Resumo:
Electrodeposition of bismuth on gold microelectrodes for determination of Pb(II) by square wave anodic stripping voltammetry (SWASV) was accomplished by an in situ procedure in alkaline solution. A linear calibration plot for Pb(II) in the concentration range 40 to 6700 nmol L(-1) (r=0.998) was obtained, the detection limit was found to be 12.5 nmol L(-1) (S/N = 3) and the relative standard deviation in Solutions containing 1 mu mol L(-1) Pb(II) was 4% (n = 12). The analytical performance of the proposed sensor wits tested by measuring the Pb(II) concentration in a wine sample. The result Was in good agreement with the one obtained by GFAAS.