963 resultados para Peter Cusack
Resumo:
Background: Children born small for gestational age (SGA) experience higher rates of morbidity and mortality than those born appropriate for gestational age. In Latin America, identification and optimal management of children born SGA is a critical issue. Leading experts in pediatric endocrinology throughout Latin America established working groups in order to discuss key challenges regarding the evaluation and management of children born SGA and ultimately develop a consensus statement. Discussion: SGA is defined as a birth weight and/or birth length greater than 2 standard deviations (SD) below the population reference mean for gestational age. SGA refers to body size and implies length-weight reference data in a geographical population whose ethnicity is known and specific to this group. Ideally, each country/region within Latin America should establish its own standards and make relevant updates. SGA children should be evaluated with standardized measures by trained personnel every 3 months during year 1 and every 6 months during year 2. Those without catch-up growth within the first 6 months of life need further evaluation, as do children whose weight is <= -2 SD at age 2 years. Growth hormone treatment can begin in SGA children > 2 years with short stature (< -2.0 SD) and a growth velocity < 25th percentile for their age, and should continue until final height (a growth velocity below 2 cm/year or a bone age of > 14 years for girls and > 16 years for boys) is reached. Blood glucose, thyroid function, HbA1c, and insulin-like growth factor-1 (IGF-1) should be monitored once a year. Monitoring insulin changes from baseline and surrogates of insulin sensitivity is essential. Reduced fetal growth followed by excessive postnatal catch-up in height, and particularly in weight, should be closely monitored. In both sexes, gonadal function should be monitored especially during puberty. Summary: Children born SGA should be carefully followed by a multidisciplinary group that includes perinatologists, pediatricians, nutritionists, and pediatric endocrinologists since 10% to 15% will continue to have weight and height deficiency through development and may benefit from growth hormone treatment. Standards/guidelines should be developed on a country/region basis throughout Latin America.
Resumo:
The objective was to determine whether aging of sperm caused by incubation at normothermic (38.5 C) or heat shock (40 C) temperatures for 4 h prior to oocyte insemination affects sperm motility, fertilizing ability, competence of the resultant embryo to develop to the blastocyst stage and blastocyst sex ratio. In the first experiment, the percent of sperm that were motile was reduced by aging (P<0.001) and the reduction in motility was greater for sperm at 40 C compared to sperm at 38.5 C (P<0.01). In the second experiment, oocytes were inseminated with aged sperm. A smaller percent of oocytes fertilized with sperm aged at either temperature cleaved by Day 3 after insemination than oocytes fertilized with fresh sperm (P<0.05). There was no effect of sperm aging on the percent of oocytes or cleaved embryos that developed to the blastocyst stage. Aging of sperm before fertilization at 38.5 C reduced the percent of blastocysts that were male (P=0.08). In the third experiment, incubation of sperm at 38.5 C or 40 C for 4 h did not reduce fertilizing ability of sperm as determined by pronuclear formation at 18 h post insemination. In conclusion, aging of sperm reduced cleavage rate and the percent of blastocysts that were males but had no effect on the developmental capacity of the. embryo. The effect of aging on cleavage rate may represent reduced motility and errors occurring after fertilization and pronuclear formation. Aging at a temperature characteristic of maternal hyperthermia had little additional effect except that polyspermy was reduced. Results indicate that embryo competence for development to the blastocyst stage is independent of sperm damage as a result of aging for 4 h at normothermic or hyperthermic temperatures.
Resumo:
Genome-wide association studies (GWAS) have been successful in identifying common genetic variation involved in susceptibility to etiologically complex disease. We conducted a GWAS to identify common genetic variation involved in susceptibility to upper aero-digestive tract (UADT) cancers. Genome-wide genotyping was carried out using the Illumina HumanHap300 beadchips in 2,091 UADT cancer cases and 3,513 controls from two large European multi-centre UADT cancer studies, as well as 4,821 generic controls. The 19 top-ranked variants were investigated further in an additional 6,514 UADT cancer cases and 7,892 controls of European descent from an additional 13 UADT cancer studies participating in the INHANCE consortium. Five common variants presented evidence for significant association in the combined analysis (p <= 5 x 10(-7)). Two novel variants were identified, a 4q21 variant (rs1494961, p = 1 x 10(-8)) located near DNA repair related genes HEL308 and FAM175A (or Abraxas) and a 12q24 variant (rs4767364, p = 2 x 10(-8)) located in an extended linkage disequilibrium region that contains multiple genes including the aldehyde dehydrogenase 2 (ALDH2) gene. Three remaining variants are located in the ADH gene cluster and were identified previously in a candidate gene study involving some of these samples. The association between these three variants and UADT cancers was independently replicated in 5,092 UADT cancer cases and 6,794 controls non-overlapping samples presented here (rs1573496-ADH7, p = 5 x 10(-8); rs1229984-ADH1B, p = 7 x 10(-9); and rs698-ADH1C, p = 0.02). These results implicate two variants at 4q21 and 12q24 and further highlight three ADH variants in UADT cancer susceptibility.
Resumo:
We present K-band spectra of the near infrared counterparts to IRS 2E and IRS 2W which is associated with the ultracompact H II region W51d, both of them embedded sources in the Galactic compact H II region W51 IRS 2. The high spatial resolution observations were obtained with the laser guide star facility and Near-infrared Integral Field Spectrograph (NIFS) mounted at the Gemini-North observatory. The spectrum of the ionizing source of W51d shows the photospheric features N III ( 21155 angstrom) in emission and He II ( 21897 angstrom) in absorption which lead us to classify it as a young O3 type star. We detected CO overtone in emission at 23000 angstrom in the spectrum of IRS 2E, suggesting that it is a massive young object still surrounded by an accretion disk, probably transitioning from the hot core phase to an ultracompact H II region.
Resumo:
Based on high-resolution (R approximate to 42 000 to 48 000) and high signal-to-noise (S/N approximate to 50 to 150) spectra obtained with UVES/VLT, we present detailed elemental abundances (O, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni, Zn, Y, and Ba) and stellar ages for 12 new microlensed dwarf and subgiant stars in the Galactic bulge. Including previous microlensing events, the sample of homogeneously analysed bulge dwarfs has now grown to 26. The analysis is based on equivalent width measurements and standard 1-D LTE MARCS model stellar atmospheres. We also present NLTE Li abundances based on line synthesis of the (7)Li line at 670.8 nm. The results from the 26 microlensed dwarf and subgiant stars show that the bulge metallicity distribution (MDF) is double-peaked; one peak at [Fe/H] approximate to -0.6 and one at [Fe/H] approximate to +0.3, and with a dearth of stars around solar metallicity. This is in contrast to the MDF derived from red giants in Baade's window, which peaks at this exact value. A simple significance test shows that it is extremely unlikely to have such a gap in the microlensed dwarf star MDF if the dwarf stars are drawn from the giant star MDF. To resolve this issue we discuss several possibilities, but we can not settle on a conclusive solution for the observed differences. We further find that the metal-poor bulge dwarf stars are predominantly old with ages greater than 10 Gyr, while the metal-rich bulge dwarf stars show a wide range of ages. The metal-poor bulge sample is very similar to the Galactic thick disk in terms of average metallicity, elemental abundance trends, and stellar ages. Speculatively, the metal-rich bulge population might be the manifestation of the inner thin disk. If so, the two bulge populations could support the recent findings, based on kinematics, that there are no signatures of a classical bulge and that the Milky Way is a pure-disk galaxy. Also, recent claims of a flat IMF in the bulge based on the MDF of giant stars may have to be revised based on the MDF and abundance trends probed by our microlensed dwarf stars.
Resumo:
Aims. We report the discovery of very shallow (Delta F/F approximate to 3.4 x 10(-4)), periodic dips in the light curve of an active V = 11.7 G9V star observed by the CoRoT satellite, which we interpret as caused by a transiting companion. We describe the 3-colour CoRoT data and complementary ground-based observations that support the planetary nature of the companion. Methods. We used CoRoT colours information, good angular resolution ground-based photometric observations in- and out- of transit, adaptive optics imaging, near-infrared spectroscopy, and preliminary results from radial velocity measurements, to test the diluted eclipsing binary scenarios. The parameters of the host star were derived from optical spectra, which were then combined with the CoRoT light curve to derive parameters of the companion. Results. We examined all conceivable cases of false positives carefully, and all the tests support the planetary hypothesis. Blends with separation >0.40 '' or triple systems are almost excluded with a 8 x 10(-4) risk left. We conclude that, inasmuch we have been exhaustive, we have discovered a planetary companion, named CoRoT-7b, for which we derive a period of 0.853 59 +/- 3 x 10(-5) day and a radius of R(p) = 1.68 +/- 0.09 R(Earth). Analysis of preliminary radial velocity data yields an upper limit of 21 M(Earth) for the companion mass, supporting the finding. Conclusions. CoRoT-7b is very likely the first Super-Earth with a measured radius. This object illustrates what will probably become a common situation with missions such as Kepler, namely the need to establish the planetary origin of transits in the absence of a firm radial velocity detection and mass measurement. The composition of CoRoT-7b remains loosely constrained without a precise mass. A very high surface temperature on its irradiated face, approximate to 1800-2600 K at the substellar point, and a very low one, approximate to 50 K, on its dark face assuming no atmosphere, have been derived.
Resumo:
Background: Polymorphisms of the mannose-binding lectin gene (MBL2) affect the concentration and functional efficiency of the protein. We recently used haplotype-specific sequencing to identify 23 MBL2 haplotypes, associated with enhanced susceptibility to several diseases. Results: In this work, we applied the same method in 288 and 470 chromosomes from Gabonese and European adults, respectively, and found three new haplotypes in the last group. We propose a phylogenetic nomenclature to standardize MBL2 studies and found two major phylogenetic branches due to six strongly linked polymorphisms associated with high MBL production. They presented high Fst values and were imbedded in regions with high nucleotide diversity and significant Tajima's D values. Compared to others using small sample sizes and unphased genotypic data, we found differences in haplotyping, frequency estimation, Fu and Li's D* and Fst results. Conclusion: Using extensive testing for selective neutrality, we confirmed that stochastic evolutionary factors have had a major role in shaping this polymorphic gene worldwide.
Resumo:
Neonatal diabetes is a rare monogenic form of diabetes that usually presents within the first six months of life. It is commonly caused by gain-of-function mutations in the genes encoding the Kir6.2 and SUR1 subunits of the plasmalemmal ATP-sensitive K(+) (K(ATP)) channel. To better understand this disease, we generated a mouse expressing a Kir6.2 mutation (V59M) that causes neonatal diabetes in humans and we used Cre-lox technology to express the mutation specifically in pancreatic beta cells. These beta-V59M mice developed severe diabetes soon after birth, and by 5 weeks of age, blood glucose levels were markedly increased and insulin was undetectable. Islets isolated from beta-V59M mice secreted substantially less insulin and showed a smaller increase in intracellular calcium in response to glucose. This was due to a reduced sensitivity of K(ATP) channels in pancreatic beta cells to inhibition by ATP or glucose. In contrast, the sulfonylurea tolbutamide, a specific blocker of K(ATP) channels, closed K(ATP) channels, elevated intracellular calcium levels, and stimulated insulin release in beta-V59M beta cells, indicating that events downstream of K(ATP) channel closure remained intact. Expression of the V59M Kir6.2 mutation in pancreatic beta cells alone is thus sufficient to recapitulate the neonatal diabetes observed in humans. beta-V59M islets also displayed a reduced percentage of beta cells, abnormal morphology, lower insulin content, and decreased expression of Kir6.2, SUR1, and insulin mRNA. All these changes are expected to contribute to the diabetes of beta-V59M mice. Their cause requires further investigation.
Resumo:
We investigate bouncing solutions in the framework of the nonsingular gravity model of Brandenberger, Mukhanov and Sornborger. We show that a spatially flat universe filled with ordinary matter undergoing a phase of contraction reaches a stage of minimal expansion factor before bouncing in a regular way to reach the expanding phase. The expansion can be connected to the usual radiation-and matter-dominated epochs before reaching a final expanding de Sitter phase. In general relativity (GR), a bounce can only take place provided that the spatial sections are positively curved, a fact that has been shown to translate into a constraint on the characteristic duration of the bounce. In our model, on the other hand, a bounce can occur also in the absence of spatial curvature, which means that the time scale for the bounce can be made arbitrarily short or long. The implication is that constraints on the bounce characteristic time obtained in GR rely heavily on the assumed theory of gravity. Although the model we investigate is fourth order in the derivatives of the metric (and therefore unstable vis-a-vis the perturbations), this generic bounce dynamics should extend to string-motivated nonsingular models which can accommodate a spatially flat bounce.
Resumo:
Eleven density functionals are compared with regard to their performance for the lattice constants of solids. We consider standard functionals, such as the local-density approximation and the Perdew-Burke-Ernzerhof (PBE) generalized-gradient approximation (GGA), as well as variations of PBE GGA, such as PBEsol and similar functionals, PBE-type functionals employing a tighter Lieb-Oxford bound, and combinations thereof. On a test set of 60 solids, we perform a system-by-system analysis for selected functionals and a full statistical analysis for all of them. The impact of restoring the gradient expansion and of tightening the Lieb-Oxford bound is discussed, and confronted with previous results obtained from other codes, functionals or test sets. No functional is uniformly good for all investigated systems, but surprisingly, and pleasingly, the simplest possible modifications to PBE turn out to have the most beneficial effect on its performance. The atomization energy of molecules was also considered and on a testing set of six molecules, we found that the PBE functional is clearly the best, the others leading to strong overbinding.
Resumo:
Ultra-high-energy cosmic rays (UHECRs), with energies above similar to 6 x 10(19) eV, seem to show a weak correlation with the distribution of matter relatively near to us in the universe. It has earlier been proposed that UHECRs could be accelerated in either the nucleus or the outer lobes of the nearby radio galaxy Cen A. We show that UHECR production at a spatially intermediate location about 15 kpc northeast from the nucleus, where the jet emerging from the nucleus is observed to strike a large star-forming shell of gas, is a plausible alternative. A relativistic jet is capable of accelerating lower energy heavy seed cosmic rays (CRs) to UHECRs on timescales comparable to the time it takes the jet to pierce the large gaseous cloud. In this model, many CRs arising from a starburst, with a composition enhanced in heavy elements near the knee region around PeV, are boosted to ultra-high energies by the relativistic shock of a newly oriented jet. This model matches the overall spectrum shown by the Auger data and also makes a prediction for the chemical composition as a function of particle energy. We thus predict an observable anisotropy in the composition at high energy in the sense that lighter nuclei should preferentially be seen toward the general direction of Cen A. Taking into consideration the magnetic field models for the Galactic disk and a Galactic magnetic wind, this scenario may resolve the discrepancy between HiRes and Auger results concerning the chemical composition of UHECRs.
Resumo:
Advanced titanosaurian sauropods, such as nemegtosaurids and saltasaurids, were diverse and one of the most important groups of herbivores in the terrestrial biotas of the Late Cretaceous. However, little is known about their rise and diversification prior to the Late Cretaceous. Furthermore, the evolution of their highly-modified skull anatomy has been largely hindered by the scarcity of well-preserved cranial remains. A new sauropod dinosaur from the Early Cretaceous of Brazil represents the earliest advanced titanosaurian known to date, demonstrating that the initial diversification of advanced titanosaurians was well under way at least 30 million years before their known radiation in the latest Cretaceous. The new taxon also preserves the most complete skull among titanosaurians, further revealing that their low and elongated diplodocid-like skull morphology appeared much earlier than previously thought.
Resumo:
P>During the lifetime of an angiosperm plant various important processes such as floral transition, specification of floral organ identity and floral determinacy, are controlled by members of the MADS domain transcription factor family. To investigate the possible non-cell-autonomous function of MADS domain proteins, we expressed GFP-tagged clones of AGAMOUS (AG), APETALA3 (AP3), PISTILLATA (PI) and SEPALLATA3 (SEP3) under the control of the MERISTEMLAYER1 promoter in Arabidopsis thaliana plants. Morphological analyses revealed that epidermal overexpression was sufficient for homeotic changes in floral organs, but that it did not result in early flowering or terminal flower phenotypes that are associated with constitutive overexpression of these proteins. Localisations of the tagged proteins in these plants were analysed with confocal laser scanning microscopy in leaf tissue, inflorescence meristems and floral meristems. We demonstrated that only AG is able to move via secondary plasmodesmata from the epidermal cell layer to the subepidermal cell layer in the floral meristem and to a lesser extent in the inflorescence meristem. To study the homeotic effects in more detail, the capacity of trafficking AG to complement the ag mutant phenotype was compared with the capacity of the non-inwards-moving AP3 protein to complement the ap3 mutant phenotype. While epidermal expression of AG gave full complementation, AP3 appeared not to be able to drive all homeotic functions from the epidermis, perhaps reflecting the difference in mobility of these proteins.
Resumo:
For environmental quality assessment, INAA has been applied for determining chemical elements in small (200 mg) and large (200 g) samples of leaves from 200 trees. By applying the Ingamells` constant, the expected percent standard deviation was estimated in 0.9-2.2% for 200 mg samples. Otherwise, for composite samples (200 g), expected standard deviation varied from 0.5 to 10% in spite of analytical uncertainties ranging from 2 to 30%. Results thereby suggested the expression of the degree of representativeness as a source of uncertainty, contributing for increasing of the reliability of environmental studies mainly in the case of composite samples.
Resumo:
The metrological principles of neutron activation analysis are discussed. It has been demonstrated that this method can provide elemental amount of substance with values fully traceable to the SI. The method has been used by several laboratories worldwide in a number of CCQM key comparisons - interlaboratory comparison tests at the highest metrological level - supplying results equivalent to values from other methods for elemental or isotopic analysis in complex samples without the need to perform chemical destruction and dissolution of these samples. The CCOM accepted therefore in April 2007 the claim that neutron activation analysis should have the similar status as the methods originally listed by the CCOM as `primary methods of measurement`. Analytical characteristics and scope of application are given.