880 resultados para Peripheral Aberrations
Resumo:
Skin tumors can arise as a result of cumulative genetic abnormalities, including chromosomal aberrations that can be described as either morphological (structural rearrangements) or molecular (copy number variations). Cytogenetic techniques have been used to examine both large and small chromosomal aberrations, and include karyotyping, comparative genomic hybridization, and fluorescence in situ hybridization. This chapter describes the recurrent aberrations associated with skin tumors, such as benign melanocytic nevi, melanoma, basal cell carcinoma, squamous cell carcinoma, actinic (solar) keratosis, Bowen’s disease, keratoacanthoma, Merkel cell carcinoma, dermatofibrosarcoma protuberans, and cutaneous lymphomas, as detected by cytogenetic methodologies. A significant number of genomic aberrations are shared across different subtypes of skin tumors, including structural and numerical alterations of chromosome 1, −3p, +3q, +6, +7, +8q, −9p, +9q, −10, −17p, +17q and +20. Aberrations specific to certain skin cancers have also been detected, and include: loss of 18q in squamous cell carcinoma, but not its precursor, actinic keratosis; loss of 9q22 in sporadic basal cell carcinoma; and translocation involving 17q22 and 22q13 in dermatofibrosarcoma protuberans. These regions contain a number of potential candidate genes that are involved in aspects of cell signaling, proliferation, differentiation, and apoptosis. Cytogenetic methodologies continue to evolve with the advent of array-based comparative genomic hybridization, copy number variation microarrays, and next-generation sequencing. It is envisioned that cytogenetic analysis will continue to be employed for identification and further exploration of novel chromosomal regions and associated genes that drive skin tumorigenesis.
Resumo:
Objective: To perform a 1-stage meta-analysis of genome-wide association studies (GWAS) of multiple sclerosis (MS) susceptibility and to explore functional consequences of new susceptibility loci. Methods: We synthesized 7 MS GWAS. Each data set was imputed using HapMap phase II, and a per single nucleotide polymorphism (SNP) meta-analysis was performed across the 7 data sets. We explored RNA expression data using a quantitative trait analysis in peripheral blood mononuclear cells (PBMCs) of 228 subjects with demyelinating disease. Results: We meta-analyzed 2,529,394 unique SNPs in 5,545 cases and 12,153 controls. We identified 3 novel susceptibility alleles: rs170934T at 3p24.1 (odds ratio [OR], 1.17; p ¼ 1.6 � 10�8) near EOMES, rs2150702G in the second intron of MLANA on chromosome 9p24.1 (OR, 1.16; p ¼ 3.3 � 10�8), and rs6718520A in an intergenic region on chromosome 2p21, with THADA as the nearest flanking gene (OR, 1.17; p ¼ 3.4 � 10�8). The 3 new loci do not have a strong cis effect on RNA expression in PBMCs. Ten other susceptibility loci had a suggestive p < 1 � 10�6, some of these loci have evidence of association in other inflammatory diseases (ie, IL12B, TAGAP, PLEK, and ZMIZ1). Interpretation: We have performed a meta-analysis of GWAS in MS that more than doubles the size of previous gene discovery efforts and highlights 3 novel MS susceptibility loci. These and additional loci with suggestive evidence of association are excellent candidates for further investigations to refine and validate their role in the genetic architecture of MS.
Resumo:
BACKGROUND: Transcatheter closure of patent foramen ovale (PFO) has rapidly evolved as the preferred management strategy for the prevention of recurrent cerebrovascular events in patients with cryptogenic stroke and presumed paradoxical embolus. There is limited outcome data in patients treated with this therapy particularly for the newer devices. METHODS: Data from medical records, catheter, and echocardiography databases on 70 PFO procedures performed was collected prospectively. RESULTS: The cohort consisted of 70 patients (mean age 43.6 years, range 19 to 77 years), of whom 51% were male. The indications for closure were cryptogenic cerebrovascular accident (CVA) or transient ischemic attack (TIA) in 64 (91%) and peripheral emboli in two (2.8%) patients and cryptogenic ST-elevation myocardial infarction in one (1.4%), refractory migraine in one (1.4%), decompression sickness in one (1.4%), and orthodeoxia in one (1.4%) patient, respectively. All patients had demonstrated right-to-left shunting on bubble study. The procedures were guided by intracardiac echocardiography in 53%, transesophageal echocardiography in 39%, and the remainder by transthoracic echo alone. Devices used were the Amplatzer PFO Occluder (AGA Medical) (sizes 18-35 mm) in 49 (70%) and the Premere device (St. Jude Medical) in 21 (30%). In-hospital complications consisted of one significant groin hematoma with skin infection. Echocardiographic follow-up at 6 months revealed that most patients had no or trivial residual shunt (98.6%), while one patient (1.4%) had a mild residual shunt. At a median of 11 months' follow-up (range 1 month to 4.3 years), no patients (0%) experienced further CVA/TIAs or paradoxical embolic events during follow-up. CONCLUSION: PFO causing presumed paradoxical embolism can be closed percutaneously with a low rate of significant residual shunting and very few complications. Recurrent index events are uncommon at medium-term (up to 4 years) follow-up.
Resumo:
Introduction Gene expression profiling has enabled us to demonstrate the heterogeneity of breast cancers. The potential of a tumour to grow and metastasise is partly dependant on its ability to initiate angiogenesis or growth and remodelling of new blood vessels, usually from a pre-existing vascular network, to ensure delivery of oxygen, nutrients, and growth factors to rapidly dividing transformed cells along with access to the systemic circulation. Cell–cell signalling of semaphorin ligands through interaction with their plexin receptors is important for the homeostasis and morphogenesis of many tissues and has been widely studied for a role in neural connectivity, cancer, cell migration and immune responses. This study investigated the role of four semaphorin/plexin signalling genes in human breast cancers in vivo and in vitro. Materials and methods mRNA was extracted from formalin fixed paraffin embedded archival breast invasive ductal carcinoma tissue samples of progressive grades (grades I–III) and compared to tissue from benign tumours. Gene expression profiles were determined by microarray using the Affymetrix GeneChip® Human Genome U133 Plus 2.0 Arrays and validated by Q-PCR using a Corbett RotorGene 6000. Following validation, the gene expression profile of the identified targets was correlated with those of the human breast cancer cell lines MCF-7 and MDA-MD-231. Results The array data revealed that 888 genes were found to be significantly (p ≤ 0.05) differentially expressed between grades I and II tumours and 563 genes between grade III and benign tumours. From these genes, we identified four genes involved in semaphorin–plexin signalling including SEMA4D which has previously been identified as being involved in increased angiogenesis in breast cancers, and three other genes, SEMA4F, PLXNA2 and PLXNA3, which in the literature were associated with tumourigenesis, but not directly in breast tumourigenesis. The microarray analysis revealed that SEMA4D was significantly (P = 0.0347) down-regulated in the grade III tumours compared to benign tumours; SEMA4F, was significantly (P = 0.0159) down-regulated between grades I and II tumours; PLXNA2 was significantly (P = 0.036) down-regulated between grade III and benign tumours and PLXNA3 significantly (P = 0.042) up-regulated between grades I and II tumours. Gene expression of SEMA4D was validated using Q-PCR, demonstrating the same expression profile in both data sets. When the sample set was increased to incorporate more cases, SEMA4D continued to follow the same expression profile, including statistical significance for the differences observed and small standard deviations. In vitro the same pattern was present where expression for SEMA4D was significantly higher in MDA-MB-231 cells when compared to MCF-7 cells. The expression of SEMA4F, PLXNA2 and PLXNA3 could not be validated using Q-PCR, however in vitro analysis of these three genes revealed that both SEMA4F and PLXNA3 followed the microarray trend in expression, although they did not reach significance. In contrast, PLXNA2 demonstrated statistical significance and was in concordance with the literature. Discussion We, and others, have proposed SEMA4D to be a gene with a potentially protective effect in benign tumours that contributes to tumour growth and metastatic suppression. Previous data supports a role for SEMA4F as a tumour suppressor in the peripheral nervous system but our data seems to indicate that the gene is involved in tumour progression in breast cancer. Our in vitro analysis of PLXNA2 revealed that the gene has higher expression in more aggressive breast cancer cell types. Finally, our in vitro analysis on PLXNA3 also suggest that this gene may have some form of growth suppressive role in breast cancer, in addition to a similar role for the gene previously reported in ovarian cancer. From the data obtained in this study, SEMA4D may have a role in more aggressive and potentially metastatic breast tumours. Conclusions Semaphorins and their receptors, the plexins, have been implicated in numerous aspects of neural development, however their expression in many other epithelial tissues suggests that the semaphorin–plexin signalling system also contributes to blood vessel growth and development. These findings warrant further investigation of the role of semaphorins and plexins and their role in normal and tumour-induced angiogenesis in vivo and in vitro. This may represent a new front of attack in anti-angiogenic therapies of breast and other cancers.
Resumo:
Background Chaperonin 10 (Cpn10) is a mitochondrial molecule involved in protein folding. The aim of this study was to determine the safety profile of Cpn10 in patients with multiple sclerosis (MS). Methods A total of 50 patients with relapse-remitting or secondary progressive MS were intravenously administered 5 mg or 10 mg of Cpn10 weekly for 12 weeks in a double-blind, randomized, placebo controlled, phase II trial. Clinical reviews, including Expanded Disability Status Scale and magnetic resonance imaging (MRI) with Gadolinium, were undertaken every 4 weeks. Stimulation of patient peripheral blood mononuclear cells with lipopolysaccharide ex vivo was used to measure the in vivo activity of Cpn10. Results No significant differences in the frequency of adverse events were seen between treatment and placebo arms. Leukocytes from both groups of Cpn10-treated patients produced significantly lower levels of critical proinflammatory cytokines. A trend toward improvement in new Gadolinium enhancing lesions on MRI was observed, but this difference was not statistically significant. No differences in clinical outcome measures were seen. Conclusions Cpn10 is safe and well tolerated when administered to patients with MS for 3 months, however, a further extended phase II study primarily focused on efficacy is warranted.
Resumo:
Cytogenetic analysis of melanoma and nonmelanoma skin cancers has revealed recurrent aberrations, the frequency of which is reflective of malignant potential. Highly aberrant karyotypes are seen in melanoma, squamous cell carcinoma, solar keratosis and Merkel cell carcinoma with more stable karyotypes seen in basal cell carcinoma, keratoacanthoma, Bowen’s disease, dermatofibrosarcomarotuberans and cutaneous lymphomas. Some aberrations were common amongst a number of skin cancer types including rearrangements and numerical abnormalities of chromosome 1, −3p, +3q, partial or entire trisomy 6, trisomy 7, +8q, −9p, +9q, partial or entire loss of chromosome 10, −17p, + 17q and partial or entire gain of chromosome 20. Combination of cytogenetic analysis with other molecular genetic techniques has enabled the identification of not only aberrant chromosomal regions, but also the genes that contribute to a malignant phenotype. This review provides a comprehensive summary of the pertinent cytogenetic aberrations associated with a variety of melanoma and nonmelanoma skin cancers.
Resumo:
Multiple sclerosis (MS) is a serious neurological disorder affecting young Caucasian individuals, usually with an age of onset at 18 to 40 years old. Females account for approximately 60x of MS cases and the manifestation and course of the disease is highly variable from patient to patient. The disorder is characterised by the development of plaques within the central nervous system (CNS). Many gene expression studies have been undertaken to look at the specific patterns of gene transcript levels in MS. Human tissues and experimental mice were used in these gene-profiling studies and a very valuable and interesting set of data has resulted from these various expression studies. In general, genes showing variable expression include mainly immunological and inflammatory genes, stress and antioxidant genes, as well as metabolic and central nervous system markers. Of particular interest are a number of genes localised to susceptible loci previously shown to be in linkage with MS. However due to the clinical complexity of the disease, the heterogeneity of the tissues used in expression studies, as well as the variable DNA chips/membranes used for the gene profiling, it is difficult to interpret the available information. Although this information is essential for the understanding of the pathogenesis of MS, it is difficult to decipher and define the gene pathways involved in the disorder. Experiments in gene expression profiling in MS have been numerous and lists of candidates are now available for analysis. Researchers have investigated gene expression in peripheral mononuclear white blood cells (PBMCs), in MS animal models Experimental Allergic Encephalomyelitis (EAE) and post mortem MS brain tissues. This review will focus on the results of these studies.
Resumo:
Since the advent of cytogenetic analysis, knowledge about fundamental aspects of cancer biology has increased, allowing the processes of cancer development and progression to be more fully understood and appreciated. Classical cytogenetic analysis of solid tumors had been considered difficult, but new advances in culturing techniques and the addition of new cytogenetic technologies have enabled a more comprehensive analysis of chromosomal aberrations associated with solid tumors. Our purpose in this review is to discuss the cytogenetic findings on a number of nonmelanoma skin cancers, including squamous- and basal cell carcinomas, keratoacanthoma, squamous cell carcinoma in situ (Bowen's disease), and solar keratosis. Through classical cytogenetic techniques, as well as fluorescence-based techniques such as fluorescence in situ hybridization and comparative genomic hybridization, numerous chromosomal alterations have been identified. These aberrations may aid in further defining the stages and classifications of nonmelanoma skin cancer and also may implicate chromosomal regions involved in progression and metastatic potential. This information, along with the development of newer technologies (including laser capture microdissection and comparative genomic hybridization arrays) that allow for more refined analysis, will continue to increase our knowledge about the role of chromosomal events at all stages of cancer development and progression and, more specifically, about how they are associated with nonmelanoma skin cancer.
Resumo:
In an attempt to define genomic copy number changes associated with the development of basal cell carcinoma, we investigated 15 sporadic tumors by comparative genomic hybridization. With the incorporation of tissue microdissection and degenerate oligonucleotide primed-polymerase chain reaction we were able to isolate, and then universally amplify, DNA from the tumor type. This combined approach allows the investigation of chromosomal imbalances within a histologically distinct region of tissue. Using comparative genomic hybridization we have observed novel and recurrent chromosomal gains at 6p (47%), 6q (20%), 9p (20%), 7 (13%), and X (13%). In addition comparative genomic hybridization revealed regional loss on 9q in 33% of tested tumors encompassing 9q22.3 to which the putative tumor suppressor gene, Patched, has been mapped. The deletion of Patched has been indicated in the development of hereditary and sporadic basal cell carcinomas. The identification of these recurrent genetic aberrations suggests that basal cell carcinomas may not be as genetically stable as previously thought. Further investigation of these regions may lead to the identification of other genes responsible for basal cell carcinoma formation.
Resumo:
Cytogenetic analysis is a powerful tool that allows analysis of chromosomal aberrations associated with diseased states. In particular, a combination of cytogenetic techniques has allowed the identification of aberrations associated with cancer development, including cancers of the skin. This chapter provides a comprehensive overview of cytogenetic alterations in basal and squamous cell carcinomas of the skin. These two distinct lesions have altered karyotypes that are consistent with their malignant potential. Basal cell carcinomas, although relatively stable lesions, are highly associated with recurrent aberrations of chromosomes 6, 7, 9 and X, as detected by a number of cytogenetic techniques. Squamous cell carcinomas, on the other hand are associated with a much higher degree of instability, involving aberrations of chromosomes 3, 7, 8, 11, 13, 17 and 18, as detected using a number of cytogenetic techniques. Overall, the numbers and types of aberrations associated with basal and squamous cell carcinoma, define the characteristic behaviour associated with these lesions and identification of these aberrations may aid in the understanding of malignant potential, prognosis and treatment of these skin cancers.
Resumo:
Charcot-Marie-Tooth neuropathy type 1 (CMT1) is an autosomal dominant disorder of peripheral nerve. The gene for CMT1 was originally localized to chromosome 1 by linkage to the Duffy blood group, but it has since been shown that not all CMT1 pedigrees show this linkage. We report here the results of linkage studies using five chromosome 1 markers - Duffy (Fy), antithrombin III (AT3), renin (REN), β-nerve growth factor (NGFB), and salivary amylase (AMY1) - in 16 CMT1 pedigrees. The total lod scores exclude close linkage of CMT1 to any of these markers. However, individual families show probable linkage of CMT1 to Duffy, AT3, and/or AMY1. No linkage was indicated with REN or NGFB. These results indicate that possible location of a CMT1 gene between the AMY1 and AT3 loci at p21 and q23, respectively, on chromosome 1 and support the theory that there is at least one other CMT1 gene.
Resumo:
The ubiquitous chemical messenger molecule nitric oxide (NO) has been implicated in a diverse range of biological activities including neurotransmission, smooth muscle motility and mediation of nociception. Endogenous synthesis of NO by the neuronal isoform of the nitric oxide synthase gene family has an essential role within the central and peripheral nervous systems in addition to the autonomic innervation of cerebral blood vessels. To investigate the potential role of NO and more specifically the neuronal nitric oxide synthase (nNOS) gene in migraine susceptibility, we investigated two microsatellite repeat variants residing within the 5′ and 3′ regions of the nNOS gene. Population genomic evaluation of the two nNOS repeat variants indicated significant linkage disequilibrium between the two loci. Z-DNA conformational sequence structures within the 5′ region of the nNOS gene have the potential to enhance or repress gene promoter activity. We suggest that genetic analysis of this 5′ repeat variant is the more functional variant expressing gene wide information that could affect endogenous NO synthesis and potentially result in diseased states. However, no association with migraine (with or without aura) was seen in our extensive case-control cohort (n = 579 affected with matched controls), when both the 5′ and 3′ genetic variants were investigated.
Resumo:
The incidence of Squamous Cell Carcinoma (SCG) is growing in certain populations to the extent that it is now the most common skin lesion in young men and women in high ultraviolet exposure regions such as Queensland. In terms of incidence up to 40% of the Australian population over 40 years of age is thought to possess the precancerous Solar Keratosis (SK) lesion and with a small, but significant, chance of progression into SCC, understanding the genetic events that play a role in this process is essential. The major aims of this study were to analyse whole blood derived samples for DNA aberrations in genes associated with tumour development and cellular maintenance, with the ultimate aim of identifying genes associated with non-melanoma skin cancer development. More specifically the first aim of this project was to analyse the SDHD and MMP12 genes via Dual-Labelled Probe Real-Time PCR for copy number aberrations in an affected Solar Keratosis and control cohort. It was found that 12 samples had identifiable copy-number aberrations in either the SDHD or MMP12 gene (this means that a genetic section of either of these two genes is aberrantly amplified or deleted), with five of the samples exhibiting aberrations in both genes. The significance of this study is the contribution to the knowledge of the genetic pathways that are malformed in the progression and development of the pre-cancerous skin lesion Solar Keratosis. © 2008 Springer Science+Business Media, LLC.
Resumo:
The acetylcholine receptor (AchR) antibody assay has a key role in the diagnosis of myasthenia gravis. In this article, the role of AchR antibody assay in the diagnosis of ocular and generalized myasthenia gravis is reviewed, and compared to standard means of diagnosing the disease by clinical and electrophysiological methods.
Resumo:
Higher Degree Research (HDR) student publications are increasingly valued by students, by professional communities and by research institutions. Peer-reviewed publications form the HDR student writer's publication track record and increase competitiveness in employment and research funding opportunities. These publications also make the results of HDR student research available to the community in accessible formats. HDR student publications are also valued by universities because they provide evidence of institutional research activity within a field and attract a return on research performance. However, although publications are important to multiple stakeholders, many Education HDR students do not publish the results of their research. Hence, an investigation of Education HDR graduates who submitted work for publication during their candidacy was undertaken. This multiple, explanatory case study investigated six recent Education HDR graduates who had submitted work to peer-reviewed outlets during their candidacy. The conceptual framework supported an analysis of the development of Education HDR student writing using Alexander's (2003, 2004) Model of Domain Learning which focuses on expertise, and Lave and Wenger's (1991) situated learning within a community of practice. Within this framework, the study investigated how these graduates were able to submit or publish their research despite their relative lack of writing expertise. Case data were gathered through interviews and from graduate publication records. Contextual data were collected through graduate interviews, from Faculty and university documents, and through interviews with two Education HDR supervisors. Directed content analysis was applied to all data to ascertain the support available in the research training environment. Thematic analysis of graduate and supervisor interviews was then undertaken to reveal further information on training opportunities accessed by the HDR graduates. Pattern matching of all interview transcripts provided information on how the HDR graduates developed writing expertise. Finally, explanation building was used to determine causal links between the training accessed by the graduates and their writing expertise. The results demonstrated that Education HDR graduates developed publications and some level of expertise simultaneously within communities of practice. Students were largely supported by supervisors who played a critical role. They facilitated communities of practice and largely mediated HDR engagement in other training opportunities. However, supervisor support alone did not ensure that the HDR graduates developed writing expertise. Graduates who appeared to develop the most expertise, and produce a number of publications reported experiencing both a sustained period of engagement within one community of practice, and participation in multiple communities of practice. The implications for the MDL theory, as applied to academic writing, suggests that communities of practice can assist learners to progress from initial contact with a new domain of interest through to competence. The implications for research training include the suggestion that supervisors as potentially crucial supporters of HDR student writing for publication should themselves be active publishers. Also, Faculty or university sponsorship of communities of practice focussed on HDR student writing for publication could provide effective support for the development of HDR student writing expertise and potentially increase the number of their peer-reviewed publications.