961 resultados para Periodic Solutions of Traveling Type for mKdV Equations
Resumo:
Context. The ongoing Gaia-ESO Public Spectroscopic Survey is using FLAMES at the VLT to obtain high-quality medium-resolution Giraffe spectra for about 105 stars and high-resolution UVES spectra for about 5000 stars. With UVES, the Survey has already observed 1447 FGK-type stars. Aims. These UVES spectra are analyzed in parallel by several state-of-the-art methodologies. Our aim is to present how these analyses were implemented, to discuss their results, and to describe how a final recommended parameter scale is defined. We also discuss the precision (method-to-method dispersion) and accuracy (biases with respect to the reference values) of the final parameters. These results are part of the Gaia-ESO second internal release and will be part of its first public release of advanced data products. Methods. The final parameter scale is tied to the scale defined by the Gaia benchmark stars, a set of stars with fundamental atmospheric parameters. In addition, a set of open and globular clusters is used to evaluate the physical soundness of the results. Each of the implemented methodologies is judged against the benchmark stars to define weights in three different regions of the parameter space. The final recommended results are the weighted medians of those from the individual methods. Results. The recommended results successfully reproduce the atmospheric parameters of the benchmark stars and the expected Teff-log g relation of the calibrating clusters. Atmospheric parameters and abundances have been determined for 1301 FGK-type stars observed with UVES. The median of the method-to-method dispersion of the atmospheric parameters is 55 K for Teff, 0.13 dex for log g and 0.07 dex for [Fe/H]. Systematic biases are estimated to be between 50−100 K for Teff, 0.10−0.25 dex for log g and 0.05−0.10 dex for [Fe/H]. Abundances for 24 elements were derived: C, N, O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Ba, Nd, and Eu. The typical method-to-method dispersion of the abundances varies between 0.10 and 0.20 dex. Conclusions. The Gaia-ESO sample of high-resolution spectra of FGK-type stars will be among the largest of its kind analyzed in a homogeneous way. The extensive list of elemental abundances derived in these stars will enable significant advances in the areas of stellar evolution and Milky Way formation and evolution.
Resumo:
Dual-phase-lagging (DPL) models constitute a family of non-Fourier models of heat conduction that allow for the presence of time lags in the heat flux and the temperature gradient. These lags may need to be considered when modeling microscale heat transfer, and thus DPL models have found application in the last years in a wide range of theoretical and technical heat transfer problems. Consequently, analytical solutions and methods for computing numerical approximations have been proposed for particular DPL models in different settings. In this work, a compact difference scheme for second order DPL models is developed, providing higher order precision than a previously proposed method. The scheme is shown to be unconditionally stable and convergent, and its accuracy is illustrated with numerical examples.
Resumo:
Tese de mestrado, Epidemiologia, Universidade de Lisboa, Faculdade de Medicina, 2015
Resumo:
Basalts in Hole 648B, located in the rift valley of the Mid-Atlantic Ridge at 23°N in crust estimated to be less than 100,000 years old, are mainly fresh, but small amounts of secondary phases are found on fracture surfaces and in alteration halos within the rocks. The halos are defined by dark bands 1-4 mm thick that have developed parallel to fracture surfaces or pillow margins and which in some cases have migrated some centimeters into the rock. The dark bands are the principal locus of secondary phases. The secondary phases are olive-green and yellow protoceladonites, of composition and structure intermediate between celadonite and iron-rich saponite, red (Mn-poor) to opaque (Mn-rich) iron oxyhydroxides, mixtures of protoceladonite and iron oxyhydroxide, and rare manganese oxides. These phases occur mainly as linings or fillings of open spaces in the basalt within the dark bands. Sulfides and intersertal glass are the only primary phases that can be seen to have been altered. Where dark bands have migrated into the rock, the rock behind the advancing band is almost devoid of secondary phases, implying redissolution. The potassium and magnesium in the secondary phases could have been supplied from ambient seawater. The aluminum in the protoceladonites must have been derived from local reaction of intergranular glass. The source of iron and silica could have been intergranular glass or low temperature mineralizing solutions of the type responsible for the formation of deposits of manganese oxides and iron oxyhydroxides and silicates on the seafloor.
Resumo:
Mode of access: Internet.
Resumo:
Federal Highway Administration, Office of Research and Development, Washington, D.C.
Resumo:
Federal Highway Administration, Office of Research and Development, Washington, D.C.
Resumo:
Includes bibliographical references.