898 resultados para Perfusion mésentérique
Resumo:
L’hypertension artérielle pulmonaire (HTAP) est une maladie caractérisée par l’augmentation progressive des résistances vasculaires pulmonaires causant une augmentation de la pression artérielle pulmonaire qui mène au décès prématuré des patients. Malgré une amélioration rapide ces dernières années des traitements spécifiques, les patients souffrant d’HTAP demeurent dyspnéiques et intolérants à l’effort. L’atteinte vasculaire pulmonaire est actuellement irréversible. Elle est également la source de plusieurs anomalies au niveau des systèmes cardiovasculaires, ventilatoires et musculaires constituant les principaux déterminants physiologiques de la capacité à l’effort des patients. Cette thèse a investigué différentes facettes de la tolérance à l’effort en HTAP : les différents mécanismes ayant un impact sur l’apport musculaire en oxygène, l’altération des voies de signalisation cellulaire impliquées dans l’angiogenèse musculaire et les mécanismes ayant un impact sur la régulation du débit sanguin et l’oxygénation cérébrale en HTAP. Nous avons premièrement documenté une diminution de l’apport en oxygène aux muscles squelettiques à l’effort des patients en relation avec une diminution de la densité capillaire musculaire. Ce défaut d’angiogenèse corrélait d’ailleurs avec la capacité à l’effort des sujets. Par la suite, nous avons étudié les voies de signalisations cellulaires de l’angiogenèse musculaire. Ces résultats ont permis de démontrer une diminution de l’expression de miR-126, unique aux patients HTAP, qui était responsable de la diminution de la densité capillaire et qui contribuait à leur intolérance à l’effort. De plus, il était possible de moduler in vivo l’expression de miR-126. L’expérimentation in vivo, à l’aide d’un modèle murin d’HTAP, a permis de rétablir l’expression de miR-126, d’augmenter la microcirculation musculaire et d’améliorer la tolérance à l’effort des animaux, ce qui met en lumière le potentiel thérapeutique de l’angiogenèse musculaire pour améliorer la capacité à l’effort en HTAP. Notre dernier projet a démontré que les patients HTAP présentaient une diminution de débit sanguin cérébral. Ce projet a également démontré que les changements de pression artérielle sont moins bien amortis par les vaisseaux cérébraux des patients et que leurs vaisseaux cérébraux étaient moins réactifs aux changements de CO2. Les patients présentaient aussi une augmentation de la sensibilité des chémorécepteurs centraux qui contribuait à augmenter leur ventilation au repos, mais aussi à l’exercice. Finalement, à l’effort, nous avons démontré que le débit sanguin cérébral des patients HTAP était principalement influencé par la pression artérielle alors que chez les sujets sains, le débit sanguin cérébral était influencé principalement par la PETCO2. Nous avons également démontré que les patients HTAP présentaient une diminution progressive de leur oxygénation cérébrale, qui corrélait avec leur capacité à l’effort. Les résultats obtenus au cours de ce doctorat démontrent bien que la capacité à l’effort en HTAP est aussi déterminée par plusieurs anomalies physiopathologiques périphériques.
Resumo:
Understanding the dynamics of blood cells is a crucial element to discover biological mechanisms, to develop new efficient drugs, design sophisticated microfluidic devices, for diagnostics. In this work, we focus on the dynamics of red blood cells in microvascular flow. Microvascular blood flow resistance has a strong impact on cardiovascular function and tissue perfusion. The flow resistance in microcirculation is governed by flow behavior of blood through a complex network of vessels, where the distribution of red blood cells across vessel cross-sections may be significantly distorted at vessel bifurcations and junctions. We investigate the development of blood flow and its resistance starting from a dispersed configuration of red blood cells in simulations for different hematocrits, flow rates, vessel diameters, and aggregation interactions between red blood cells. Initially dispersed red blood cells migrate toward the vessel center leading to the formation of a cell-free layer near the wall and to a decrease of the flow resistance. The development of cell-free layer appears to be nearly universal when scaled with a characteristic shear rate of the flow, which allows an estimation of the length of a vessel required for full flow development, $l_c \approx 25D$, with vessel diameter $D$. Thus, the potential effect of red blood cell dispersion at vessel bifurcations and junctions on the flow resistance may be significant in vessels which are shorter or comparable to the length $l_c$. The presence of aggregation interactions between red blood cells lead in general to a reduction of blood flow resistance. The development of the cell-free layer thickness looks similar for both cases with and without aggregation interactions. Although, attractive interactions result in a larger cell-free layer plateau values. However, because the aggregation forces are short-ranged at high enough shear rates ($\bar{\dot{\gamma}} \gtrsim 50~\text{s}^{-1}$) aggregation of red blood cells does not bring a significant change to the blood flow properties. Also, we develop a simple theoretical model which is able to describe the converged cell-free-layer thickness with respect to flow rate assuming steady-state flow. The model is based on the balance between a lift force on red blood cells due to cell-wall hydrodynamic interactions and shear-induced effective pressure due to cell-cell interactions in flow. We expect that these results can also be used to better understand the flow behavior of other suspensions of deformable particles such as vesicles, capsules, and cells. Finally, we investigate segregation phenomena in blood as a two-component suspension under Poiseuille flow, consisting of red blood cells and target cells. The spatial distribution of particles in blood flow is very important. For example, in case of nanoparticle drug delivery, the particles need to come closer to microvessel walls, in order to adhere and bring the drug to a target position within the microvasculature. Here we consider that segregation can be described as a competition between shear-induced diffusion and the lift force that pushes every soft particle in a flow away from the wall. In order to investigate the segregation, on one hand, we have 2D DPD simulations of red blood cells and target cell of different sizes, on the other hand the Fokker-Planck equation for steady state. For the equation we measure force profile, particle distribution and diffusion constant across the channel. We compare simulation results with those from the Fokker-Planck equation and find a very good correspondence between the two approaches. Moreover, we investigate the diffusion behavior of target particles for different hematocrit values and shear rates. Our simulation results indicate that diffusion constant increases with increasing hematocrit and depends linearly on shear rate. The third part of the study describes development of a simulation model of complex vascular geometries. The development of the model is important to reproduce vascular systems of small pieces of tissues which might be gotten from MRI or microscope images. The simulation model of the complex vascular systems might be divided into three parts: modeling the geometry, developing in- and outflow boundary conditions, and simulation domain decomposition for an efficient computation. We have found that for the in- and outflow boundary conditions it is better to use the SDPD fluid than DPD one because of the density fluctuations along the channel of the latter. During the flow in a straight channel, it is difficult to control the density of the DPD fluid. However, the SDPD fluid has not that shortcoming even in more complex channels with many branches and in- and outflows because the force acting on particles is calculated also depending on the local density of the fluid.
Resumo:
Le cordon ombilical humain suscite beaucoup d’intérêt comme source de cellules à des fins de recherche et de thérapie. Quatre types cellulaires majeurs - les cellules épithéliales, stromales, musculaires lisses et endothéliales - composent les tissus solides du cordon ombilical. Quelques-uns de ces types cellulaires ont été utilisés en recherche scientifique depuis longtemps, alors que d’autres commencent à peine à dévoiler leur potentiel. Nous avons développé un protocole unique pour l’extraction séquentielle de tous ces types cellulaires d’un seul cordon ombilical, permettant ainsi la reconstruction à partir d’une même source. La combinaison des techniques de perfusion, immersion et explants a mené à la mise en culture et à l’expansion de ces cellules, dont les cellules épithéliales et les cellules stromales de la gelée de Wharton qui ont été caractérisées plus en détail par l’immunomarquage de protéines spécifiques. Leur potentiel pour la médecine régénératrice a été démontré par la production de tissus par génie tissulaire. Un vaisseau sanguin composé de cellules stromales et de cellules musculaires lisses du cordon ombilical démontra une résistance substantielle à l’éclatement. Les capacités de différenciation des cellules épithéliales ont été étudiées dans le contexte d’une peau bilamellaire reconstruite en combinaison avec des kératinocytes, des fibroblastes dermiques, et des cellules stromales de la gelée de Wharton. Les cellules épithéliales ont montré une différenciation similaire à celle des kératinocytes lorsque cultivées sur des fibroblastes dermiques et exposées à l’air, tandis que sur des cellules stromales du cordon, elles ont subi une désorganisation. Finalement, la différenciation des cellules stromales a été induite en culture vers plusieurs types cellulaires afin de compléter cette étude. L’ensemble des résultats fait ressortir l’importance non seulement de l’influence du milieu physique sur la croissance et la différenciation des cellules, mais également de l’impact de la provenance des cellules sur la qualité des tissus reconstruits.
Resumo:
Background. Indirect revascularization is a therapeutic approach in case of severe angina not suitable for percutaneous or surgical revascularization. Transmyocardial revascularization (TMR) is one of the techniques used for indirect revascularization and it allows to create transmyocardial channels by a laser energy bundle delivered on left ventricular epicardial surface. Benefits of the procedure are related mainly to the angiogenesis caused by inflammation and secondly to the destruction of the nervous fibers of the heart. Patients and method. From September 1996 up to July 1997, 14 patients (9 males – 66.7%, mean age 64.8±7.9 years) underwent TMR. All patients referred angina at rest; Canadian Angina Class was IV in 7 patients (58.3%), III in 5 (41.7%). Before the enrollment, coronarography was routinely performed to find out the feasibility of Coronary Artery Bypass Graft (CABG): 13 patients (91,6%) had coronary arteries lesions not suitable for direct revascularization; this condition was limited only to postero-lateral area in one patient submitted to combined TMR + CABG procedures. Results. Mean discharge time was 3,2±1,3 days after surgery. All patients were discharged in good clinical conditions. Perfusion thallium scintigraphy was performed in 7 patients at a mean follow-up of 4±2 months, showing in all but one an improvement of perfusion defects. Moreover an exercise treadmill improvement was observed in the same patients and all of them are in good clinical conditions, with significantly reduced use of active drugs. Conclusion. Our experience confirms that TMR is a safe and feasible procedure and it offers a therapeutic solution in case of untreatable angina. Moreover, it could be a hybrid approach for patients undergoing CABGs in case of absence of vessels suitable for surgical approach in limited areas of the heart.
Resumo:
OBJECTIVE: Intravoxel incoherent motion (IVIM) is an MRI technique with potential applications in measuring brain tumor perfusion, but its clinical impact remains to be determined. We assessed the usefulness of IVIM-metrics in predicting survival in newly diagnosed glioblastoma. METHODS: Fifteen patients with glioblastoma underwent MRI including spin-echo echo-planar DWI using 13 b-values ranging from 0 to 1000 s/mm2. Parametric maps for diffusion coefficient (D), pseudodiffusion coefficient (D*), and perfusion fraction (f) were generated for contrast-enhancing regions (CER) and non-enhancing regions (NCER). Regions of interest were manually drawn in regions of maximum f and on the corresponding dynamic susceptibility contrast images. Prognostic factors were evaluated by Kaplan-Meier survival and Cox proportional hazards analyses. RESULTS: We found that fCER and D*CER correlated with rCBFCER. The best cutoffs for 6-month survival were fCER>9.86% and D*CER>21.712 x10-3mm2/s (100% sensitivity, 71.4% specificity, 100% and 80% positive predictive values, and 80% and 100% negative predictive values; AUC:0.893 and 0.857, respectively). Treatment yielded the highest hazard ratio (5.484; 95% CI: 1.162-25.88; AUC: 0.723; P = 0.031); fCER combined with treatment predicted survival with 100% accuracy. CONCLUSIONS: The IVIM-metrics fCER and D*CER are promising biomarkers of 6-month survival in newly diagnosed glioblastoma.
Resumo:
AZEVEDO, George Dantas de et al. Raloxifene therapy does not affect uterine blood flow in postmenopausal women: a transvaginal Doppler study. Maturitas, Amsterdam, v.47, n.3, p.195-200, 2004
Resumo:
Incidental findings on low-dose CT images obtained during hybrid imaging are an increasing phenomenon as CT technology advances. Understanding the diagnostic value of incidental findings along with the technical limitations is important when reporting image results and recommending follow-up, which may result in an additional radiation dose from further diagnostic imaging and an increase in patient anxiety. This study assessed lesions incidentally detected on CT images acquired for attenuation correction on two SPECT/CT systems. Methods: An anthropomorphic chest phantom containing simulated lesions of varying size and density was imaged on an Infinia Hawkeye 4 and a Symbia T6 using the low-dose CT settings applied for attenuation correction acquisitions in myocardial perfusion imaging. Twenty-two interpreters assessed 46 images from each SPECT/CT system (15 normal images and 31 abnormal images; 41 lesions). Data were evaluated using a jackknife alternative free-response receiver-operating-characteristic analysis (JAFROC). Results: JAFROC analysis showed a significant difference (P < 0.0001) in lesion detection, with the figures of merit being 0.599 (95% confidence interval, 0.568, 0.631) and 0.810 (95% confidence interval, 0.781, 0.839) for the Infinia Hawkeye 4 and Symbia T6, respectively. Lesion detection on the Infinia Hawkeye 4 was generally limited to larger, higher-density lesions. The Symbia T6 allowed improved detection rates for midsized lesions and some lower-density lesions. However, interpreters struggled to detect small (5 mm) lesions on both image sets, irrespective of density. Conclusion: Lesion detection is more reliable on low-dose CT images from the Symbia T6 than from the Infinia Hawkeye 4. This phantom-based study gives an indication of potential lesion detection in the clinical context as shown by two commonly used SPECT/CT systems, which may assist the clinician in determining whether further diagnostic imaging is justified.
Resumo:
This paper reviews hypotheses about roles of angiogenesis in the pathogenesis of inflammatory disease in two organs, the synovial joint and the lung. Neovascularisation is a fundamental process for growth and tissue repair after injury. Nevertheless, it may contribute to a variety of chronic inflammatory diseases, including rheumatoid arthritis, osteoarthritis, asthma, and pulmonary fibrosis. Inflammation can promote angiogenesis, and new vessels may enhance tissue inflammation. Angiogenesis in inflammatory disease may also contribute to tissue growth, disordered tissue perfusion, abnormal ossification, and enhanced responses to normal or pathological stimuli. Angiogenesis inhibitors may reduce inflammation and may also help to restore appropriate tissue structure and function
Resumo:
Introdução – A cintigrafia de perfusão do miocárdio (CPM) é utilizada no diagnóstico e seguimento de pacientes com doença arterial coronária, sendo a sua avaliação frequentemente realizada através da análise visual dos cortes tomográficos. A escala de cores selecionada é essencial na interpretação clínica das imagens de perfusão do miocárdio. Objetivo – Avaliar a influência de diferentes escalas de cores na avaliação qualitativa das imagens de CPM e estudar quais as mais adequadas para análise visual. Métodos – Trinta e cinco estudos de CPM foram avaliados visualmente por 16 estudantes da licenciatura em medicina nuclear nas escalas de cores Cool, Gray, Gray Invert, Thermal e Warm. Para a escala de cores Cool, a análise das imagens de CPM foi realizada através de um sistema de classificação semiquantitativo por scores. As restantes escalas de cores foram avaliadas por comparação com a análise das imagens efetuada com escala de cores Cool. Resultados/Discussão – Para a escala de cores Cool, a variabilidade interoperador revelou a existência de diferenças estatisticamente significativas entre todos os participantes (p<0,05), o que se pode atribuir à subjetividade da avaliação visual. Os resultados relativos às escalas de cores Gray e Gray Invert foram os mais próximos da perfusão do miocárdio observada com a escala Cool, considerando-se escalas de cores alternativas na análise visual dos estudos de CPM. Para as escalas de cores Thermal e Warm os resultados foram mais divergentes, não se considerando adequadas para a avaliação visual dos estudos de CPM. Conclusão – A escala de cores influencia a avaliação qualitativa da perfusão na CPM.
Resumo:
Soft tissue sarcomas (STS) comprise a heterogenenous group of greater than 50 malignancies of putative mesenchymal cell origin and as such they may arise in diverse tissue types in various anatomical locations throughout the whole body. Collectively they account for approximately 1% of all human malignancies yet have a spectrum of aggressive behaviours amongst their subtypes. They thus pose a particular challenge to manage and remain an under investigated group of cancers with no generally applicable new therapies in the past 40 years and an overall 5-year survival rate that remains stagnant at around 50%. From September 2000 to July 2006 I undertook a full time post-doctoral level research fellowship at the MD Anderson Cancer Center, Houston, Texas, USA in the department of Surgical Oncology to investigate the biology of soft tissue sarcoma and test novel anti- sarcoma adenovirus-based therapy in the preclinical nude rat model of isolated limb perfusion against human sarcoma xenografts. This work, in collaboration with colleagues as indicated herein, led to a number of publications in the scientific literature furthering our understanding of the malignant phenotype of sarcoma and reported preclinical studies with wild-type p53, in a replication deficient adenovirus vector, and oncolytic adenoviruses administered by isolated limb perfusion. Additional collaborative and pioneering preclinical studies reported the molecular imaging of sarcoma response to systemically delivered therapeutic phage RGD-4c AAVP. Doxorubicin chemotherapy is the single most active broadly applicable anti-sarcoma chemotherapeutic yet only has an approximate 30% overall response rate with additional breakthrough tumour progression and recurrence after initial chemo-responsiveness further problematic features in STS management. Doxorubicin is a substrate for the multi- drug resistance (mdr) gene product p-glycoprotein drug efflux pump and exerts its main mode of action by induction of DNA double-strand breaks during the S-phase of the cell cycle. Two papers in my thesis characterise different aspects of chemoresistance in sarcoma. The first shows that wild-type p53 suppresses Protein Kinase Calpha (PKCα) phosphorylation (and activation) of p-glycoprotein by transcriptional repression of PKCα through a Sp-1 transcription factor binding site in its -244/-234 promoter region. The second paper demonstrates that Rad51 (a central mediator of homologous recombination repair of double strand breaks) has elevated levels in sarcoma and particularly in the S- G2 phase of the cell cycle. Suppression of Rad51 with small interfering RNA in sarcoma cell culture led to doxorubicin chemosensitisation. Reintroduction of wild-type p53 into STS cell lines resulted in decreased Rad51 protein and mRNA expression via transcriptional repression of the Rad51 promoter through increased AP-2 binding. In light of poor response rates to chemotherapy, escape from local control portends a poor prognosis for patients with sarcoma. Two papers in my thesis characterise aspects of sarcoma angiogenesis, invasion and metastasis. Human sarcoma samples were found to have high levels of matrix metalloproteinase-9 (MMP-9) with expression levels that correlated with p53 mutational status. MMP-9 is known to degrade extracellular collagen, contribute to the control of the angiogenic switch necessary in primary tumour progression and facilitate invasion and metastasis. Reconstitution of wild-type p53 function led to decreased levels of MMP-9 protein and mRNA as well as zymography-assessed MMP-9 proteolytic activity and decreased tumour cell invasiveness. Reintroduction of wild-type p53 into human sarcoma xenografts in-vivo decreased tumour growth and MMP-9 protein expression. Wild-type p53 was found to suppress mmp-9 transcription via decreased binding of NF-κB to its -607/-595 mmp-9 promoter element. Studies on the role of the VEGF165 in sarcoma found that sarcoma cells stably transfected with VEGF165 formed more aggressive xenografted tumours with increased vascularity, growth rate, metastasis, and resistance to chemotherapy. Use of the anti-VEGFR2 antibody DC101 enhanced doxorubicin sensitivity at sub-conventional dosing, inhibited tumour growth, decreased development of metastases, and reduced tumour micro-vessel density while increasing the vessel maturation index. These effects were explained primarily through effects on endothelial cells (e.c.s), rather than the tumour cells per se, where DC101 induced e.c. sensitivity to doxorubicin and suppressed e.c. production of MMPs. The p53 tumour suppressor pathway is the most frequently mutated pathway in sarcoma. Recapitulation of wild-type p53 function in sarcoma exerts a number of anti-cancer outcomes such as growth arrest, resensitisation to chemotherapy, suppression of invasion, and attenuation of angiogenesis. Using a modified nude rat-human sarcoma xenograft model for isolated limb perfusion (ILP) delivery of wild-type p53 in a replication deficient adenovirus vector I showed that functionally competent wild-type p53 could be delivered to and detected in human leiomyosarcoma xenografts confirming preclinical feasibility - although not efficacious due to low transgene expression. Viral fibre modification to express the RGD tripeptide motif led to greater viral uptake by sarcoma cells in vitro (transductional targeting) and changing the transgene promoter to a response element active in cells with active telomerase expression restricted the transgene expression to the tumour intracellular environment (transcriptional targeting). Delivery of the fibre-modified, selectively replication proficient oncolytic adenovirus Ad.hTC.GFP/ E1a.RGD by ILP demonstrated a more robust, and tumour-restricted, transgene expression with evidence of anti-sarcoma effect confirmed microscopically. Collaborative studies using the fibre modified phage RGD-4C AAVP confirmed that systemic delivery specifically, efficiently, and repeatedly targets human sarcoma xenografts, binds to αv integrins in tumours, and demonstrates a durable, though heterogeneous, transgene expression of 1-4 weeks. Incorporation of the Herpes Simplex Virus thymidine kinase (HSVtk) transgene into RGD-4C AAVP permitted CT-PET spatial and temporal molecular imaging in vivo of transgene expression and allowed quantification of tumour metabolic activity both before and after interval administration of a systemic cytotoxic with predictable and measurable response to treatment before becoming apparent clinically. These papers further the medical and scientific community’s understanding of the biology of soft tissue sarcoma and report preclinical studies with novel and promising anti- sarcoma therapeutics.
Resumo:
The generation of functional, vascularized tissues is a key challenge for the field of tissue engineering. Before clinical implantations of tissue engineered bone constructs can succeed, in vitro fabrication needs to address limitations in large-scale tissue development, including controlled osteogenesis and an inadequate vasculature network to prevent necrosis of large constructs. The tubular perfusion system (TPS) bioreactor is an effective culturing method to augment osteogenic differentiation and maintain viability of human mesenchymal stem cell (hMSC)-seeded scaffolds while they are developed in vitro. To further enhance this process, we developed a novel osteogenic growth factors delivery system for dynamically cultured hMSCs using microparticles encapsulated in three-dimensional alginate scaffolds. In light of this increased differentiation, we characterized the endogenous cytokine distribution throughout the TPS bioreactor. An advantageous effect in the ‘outlet’ portion of the uniaxial growth chamber was discovered due to the system’s downstream circulation and the unique modular aspect of the scaffolds. This unique trait allowed us to carefully tune the differentiation behavior of specific cell populations. We applied the knowledge gained from the growth profile of the TPS bioreactor to culture a high-volume bone composite in a 3D-printed femur mold. This resulted in a tissue engineered bone construct with a volume of 200cm3, a 20-fold increase over previously reported sizes. We demonstrated high viability of the cultured cells throughout the culture period as well as early signs of osteogenic differentiation. Taking one step closer toward a viable implant and minimize tissue necrosis after implantation, we designed a composite construct by coculturing endothelial cells (ECs) and differentiating hMSCs, encouraging prevascularization and anastomosis of the graft with the host vasculature. We discovered the necessity of cell to cell proximity between the two cell types as well as preference for the natural cell binding capabilities of hydrogels like collagen. Notably, the results suggested increased osteogenic and angiogenic potential of the encapsulated cells when dynamically cultured in the TPS bioreactor, suggesting a synergistic effect between coculture and applied shear stress. This work highlights the feasibility of fabricating a high-volume, prevascularized tissue engineered bone construct for the regeneration of a critical size defect.
Resumo:
Amphetamine enhances recovery after experimental ischaemia and has shown promise in small clinical trials when combined with motor or sensory stimulation. Amphetamine, a sympathomimetic, might have haemodynamic effects in stroke patients, although limited data have been published. Subjects were recruited 3-30 days post ischaemic stroke into a phase II randomised (1:1), double blind, placebo-controlled trial. Subjects received dexamphetamine (5mg initially, then 10mg for 10 subsequent doses with 3 or 4 day separations) or placebo in addition to inpatient physiotherapy. Recovery was assessed by motor scales (Fugl-Meyer, FM), and functional scales (Barthel index, BI and modified Rankin score, mRS). Peripheral blood pressure (BP), central haemodynamics and middle cerebral artery blood flow velocity were assessed before, and 90 minutes after, the first 2 doses. 33 subjects were recruited, age 33-88 (mean 71) years, males 52%, 4-30 (median 15) days post stroke to inclusion. 16 patients were randomised to placebo and 17 amphetamine. Amphetamine did not improve motor function at 90 days; mean (standard deviation) FM 37.6 (27.6) vs. control 35.2 (27.8) (p=0.81). Functional outcome (BI, mRS) did not differ between treatment groups. Peripheral and central systolic BP, and heart rate, were 11.2 mmHg (p=0.03), 9.5 mmHg (p=0.04) and 7 beats/minute (p=0.02) higher respectively with amphetamine, compared with control. A non-significant reduction in myocardial perfusion (Buckberg Index) was seen with amphetamine. Other cardiac and cerebral haemodynamics were unaffected. Amphetamine did not improve motor impairment or function after ischaemic stroke but did significantly increase BP and heart rate without altering cerebral haemodynamics.
Resumo:
Apesar dos avanços na sua abordagem terapêutica, a hemorragia severa continua a ser a principal causa de morbilidade e mortalidade em animais vítimas de trauma ou sujeitos a intervenção cirúrgica. O aparecimento de lesões decorrentes, ou da morte consequente, deve-se ao deficit de volume de fluidos intravasculares e subsequente desenvolvimento do estado hipovolémico. Em termos fisiológicos, a consequência mais devastadora desta condição é a diminuição, absoluta ou relativa, da pré-carga cardíaca, resultando num baixo débito cardíaco, perfusão tecidular inadequada e diminuição do aporte de oxigénio aos tecidos, o qual compromete, inequivocamente, a função celular. O controlo da hipovolémia passa pela resolução da hemorragia e pela correção do deficit de volume intravascular causado e envolve, obrigatoriamente, o recurso à administração de fluidos intravenosos. A escolha do tipo de fluido mais adequado para a terapia intravenosa, em cada ocorrência, é uma tarefa que exige reflexão e ponderação. A seleção dos fluidos apropriados é da responsabilidade do médico veterinário, sendo, no entanto, fundamental que o enfermeiro veterinário detenha conhecimentos básicos sobre as diferenças entre os fluidos disponíveis para a fluidoterapia. O objetivo deste projeto é determinar qual o tipo de fluido mais adequado para ajudar a preservar a integridade e funcionalidade hepática, em situações de hipoperfusão, e assim ajudar a padronizar a sua escolha no momento da decisão pela fluidoterapia. Para atingir este objetivo recorreu-se ao modelo suíno, a fim de recrear a situação de hipoperfusão e posteriormente avaliar os efeitos de dois fluidos diferentes administrados na reposição volémica, o lactato de Ringer e hidroxietilamido 130/0,4. Os animais foram sujeitos a uma hemorragia controlada, após a qual foi reposta a volémia com os respetivos fluidos. Após esta reposição volémica os animais foram eutanaziados e foram obtidas amostras de vários órgãos, incluindo fígado, objeto do presente estudo, alvo de diversas técnicas histopatológicas, nomeadamente o estudo histopatológico de rotina, através de hematoxilina e eosina, e diversos métodos para deteção de eventos apoptóticos, incluindo citocromo c, TUNEL e M30.Após a avaliação exaustiva dos resultados obtidos através das técnicas realizadas, foi possível concluir que o lactato de Ringer confere uma maior proteção contra a lesão de reperfusão, quando comparado com o hidroxietilamido 130/0,4.
Resumo:
Introduction: Free tissue transfer using an abdominal tissue flap is a commonly used method of breast reconstruction. However, there are well recognised complications including venous congestion, fat necrosis and flap loss associated with the perfusion of these flaps. Post-operative aesthetic outcome assessment of such breast reconstructions have also proven to be difficult with current methods displaying poor inter-rater reliability and patient correlation. The aim of this research was to investigate potential improvements to the post-operative outcome of free abdominal tissue transfer breast reconstruction by assessing the effects of vascular augmentation interventions on flap perfusion and to assess the use of real-time digital video as a post-operative assessment tool. Methods: An in-vivo pilot study carried out on 12 patients undergoing DIEP flap breast reconstruction assessed the effect on Zone IV perfusion, using LDI and ICG angiography, of vascular augmentation of the flap using the contralateral SIEA and SIEV. A further animal experimental study was carried out on 12 Sprague Dawley rats to assess the effects on main pedicle arterial blood flow and on Zone I and Zone IV perfusion of vascular augmentation of the abdominal flap using the contralateral vascular system. A separate post-operative assessment study was undertaken on 35 breast reconstruction patients who evaluated their own reconstructions via patient questionnaire and underwent photograph and real-time digital video capture of their reconstructions with subsequent panel assessment. Results: Our results showed that combined vascular augmentation of DIEP flaps, using both the SIEA and SIEV together, led to an increase in Zone IV perfusion. Vascular augmentation of the rat abdominal flaps also led to a significant increase in Zone I/IV perfusion, but the augmentation procedure resulted in a decreased main pedicle arterial blood flow. Our post-operative assessment study revealed that real-time digital video footage led to greater inter-rater agreement with regards to cosmesis and shape than photography and also correlated more with patient self-assessment. Conclusion: Vascular augmentation of abdominal free tissue flaps using the contralateral vascular system results in an increase to Zone IV perfusion, however this may lead to decreased main pedicle arterial blood flow. Real-time digital video is a valid post-operative aesthetic assessment method of breast reconstruction outcome and is superior to static photography when coupled with panel assessment.