981 resultados para PROTEIN-TYROSINE-PHOSPHATASE
Resumo:
Green fluorescent protein (GFP) shows remarkable structural stability and high fluorescence; its stability can be directly related to its fluorescence output, among other characteristics. GFP is stable under increasing temperatures, and its thermal denaturation is highly reproducible. Some polymers, such as polyethylene glycol, are often used as modifiers of characteristics of biological macromolecules, to improve the biochemical activity and stability of proteins or drug bioavailability. The aim of this study was to evaluate the thermal stability of GFP in the presence of different PEG molar weights at several concentrations and exposed to constant temperatures, in a range of 70-95 degrees C. Thermal stability was expressed in decimal reduction time. It was observed that the D-values obtained were almost constant for temperatures of 85, 90, and 95 degrees C, despite the PEG concentration or molar weight studied. Even though PEG can stabilize proteins, only at 75 degrees C, PEG 600 and 4,000 g/mol stabilized GFP. (C) 2009 American Institute of Chemical Engineers Biotechnol. Prog., 26: 252-256, 2010
Resumo:
Ethylene oxide (EO) is used to sterilize Oxygenator and Tubing applied to heart surgery. Residual levels of EO and its derivatives, ethylene chlorohydrin (ECH) and ethylene glycol (EG), may be hazardous to the patients. Therefore, it must be removed by the aeration process. This study aimed to estimate the minimum aeration time for these devices to attain safe limits for use (avoiding excessive aeration time) and to evaluate the Green Fluorescent Protein (GFP) as a biosensor capable of best indicating the distribution and penetration of EO gas throughout the sterilization chamber. Sterilization cycles of 2, 4, and 8 h were monitored by Bacillus atrophaeus ATCC 9372 as a biological indicator (131) and by the GFP. Residual levels of EO, ECH, and EG were determined by gas chromatography (GC), and the residual dissipation was studied. Safe limits were reached right after the sterilization process for Oxygenator and after 204 h of aeration for Tubing. In the 2 h cycle, the GFP concentration decreased from 4.8 (+/- 3.2)% to 7.5 (+/- 2.5)%. For the 4 h cycle, the GFP concentration decreased from 17.4 (+/- 3.0)% to 21.5 (+/- 6.8)%, and in the 8 h cycle, it decreased from 22.5 (+/- 3.2)% to 23.9 (+/- 3.9)%. This finding showed the potentiality for GFP applications as an EO biosensor. (C) 2009 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 9113: 626-630, 2009
Resumo:
The partitioning of Green Fluorescent Protein (GFP) in poly(ethylene glycol)/Na-poly(acrylate) aqueous two-phase systems (PEG/NaPA-ATPS) has been investigated. The aqueous two-phase systems are formed by mixing the polymers with a salt and a protein solution. The protein partitioning in the two-phase system was investigated at 25 degrees C. The concentration of the GFP was measured by fluorimetry. It was found that the partitioning of GFP depends on the salt type, pH and concentration of PEG. The data indicates that GFP partitions more strongly to the PEG phase in presence of Na2SO4 relative to NaCl. Furthermore, the GFP partitions more to the PEG phase at higher pH. The partition to the PEG phase is strongly favoured in systems with larger tie-line lengths (i.e. systems with higher polymer concentrations). The molecular weight of PEG is important since the partition coefficient (K) of GFP gradually decreases with increasing PEG size, from K ca. 300-400 for PEG 400 to K equal to 1.19 for PEG 8000. A separation process was developed where GFP was separated from a homogenate in two extraction steps: the GFP is first partitioned to the PEG phase in a PEG 3000/NaPA 8000 system containing 3 wt% Na2SO4, where the K value of GFP was 8. The GFP is then re-extracted to a salt phase formed by mixing the previous top-phase with a Na2SO4 solution. The K-value of GFP in this back-extraction was 0.22. The total recovery based on the start material was 74%. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The partition of hemoglobin, lysozyme and glucose-6-phospate dehydrogenase (G6PDH) in a novel inexpensive aqueous two-phase system (ATPS) composed by poly(ethylene glycol) (PEG) and sodium polyacrylate (NaPA) has been studied. The effect of NaCl and Na2SO4, pH and PEG molecular size on the partitioning has been studied. At high pH (above 9), hemoglobin partitions strongly to the PEG-phase. Although some precipitation of hemoglobin occurs, high recovery values are obtained particularly for lysozyme and G6PDH. The partitioning forces are dominated by the hydrophobic and electrochemical (salt) effects, since the positively charged lysozyme and negatively charged G6PDH partitions to the non-charged PEG and the strongly negatively charged polyacrylate enriched phase, respectively. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Methods of stabilization and formulation of proteins are important in both biopharmaceutical and biocatalysis industries. Polymers are often used as modifiers of characteristics of biological macromolecules to improve the biochemical activity and stability of proteins or drug bioavailability. Green fluorescent protein (GFP) shows remarkable structural stability and high fluorescence; its stability can be directly related to its fluorescence output, among other characteristics. GFP is stable under increasing temperatures, and its thermal denaturation is highly reproducible. Relative thermal stability was undertaken by incubation of GFP at varying temperatures and GFP fluorescence was used as a reporter for unfolding. At 80 degrees C, DEAE-dextran did not have any effect on GFP fluorescence, indicating that it does not confer stability.
Resumo:
BACKGROUND: Biosurfactant production was investigated using two strains of Bacillus subtilis, one being a reference strain (B. subtilis 1012) and the other a recombinant of this (B. subtilis W1012) made able to produce the green fluorescent protein (GFP). RESULTS: Batch cultivations carried out at different initial levels of glucose (GO) in the presence of 10 g L(-1) casein demonstrated that the reference strain was able to release higher levels of biosurfactants in the medium at 5.0 <= G(0) <= 10 g L(-1) (B(max) = 104-110 mg L(-1)). The recombinant strain exhibited slightly lower levels of biosurfactants(B(max) = 90-104 mg L(-1))but only at higher glucose concentrations (G(0) >= 20 g L(-1)). Under these nutritional conditions, the fluorescence intensity linked to the production of GFP was shown to be associated with the cell concentration even after achievement of the stationary phase. CONCLUSION: The ability of the genetically-modified strain to simultaneously overproduce biosurfactant and GFP even at low biomass concentration makes it an interesting candidate for use as a biological indicator to monitor indirectly the biosurfactant production in bioremediation treatments. (C) 2008 Society of Chemical Industry
Resumo:
p21Ras protein plays a critical role in cellular signaling that induces either cell cycle progression or apoptosis. Nitric oxide (NO) has been consistently reported to activate p21Ras through the redox sensitive cysteine residue (118). In this study, we demonstrated that the p21Ras-ERK pathway regulates THP-1 monocyte/macrophage apoptosis induced by S-nitrosoglutathione (SNOG). This was apparent from studies in THP-1 cells expressing NO-insensitive p21Ras (p21Ras(C118S)) where the pro-apoptotic action of SNOG was almost abrogated. Three major MAP kinase pathways (ERK, JNK, and p38) that are downstream to p21Ras were investigated. It was observed that only the activation of ERK1/2 MAP kinases by SNOG in THP-1 cells was attributable to p21Ras. The inhibition of the ERK pathway by PD98059 markedly attenuated apoptosis in SNOG-treated THP-1 cells, but had a marginal effect on SNOG-treated THP-1 cells expressing NO-inserisitive p21Ras. The inhibition of the JNK and p38 pathways by selective inhibitors had no marked effects on the percentage of apoptosis. The induction of p21Waf1 expression by SNOG was observed in THP-1 cells harboring mutant and wild-type p21Ras, however in cells expressing mutant Ras, the expression of p21Waf1 was significantly attenuated. The treatment of THP-1 cells expressing wild-type p21Ras with PD98059 resulted in significant attenuation of p21Waf1 expression. These results indicate that the redox sensitive p21Ras-ERK pathway plays a critical role in sensing and delivering the pro-apoptotic signaling mediated by SNOG. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
In the protein folding problem, solvent-mediated forces are commonly represented by intra-chain pairwise contact energy. Although this approximation has proven to be useful in several circumstances, it is limited in some other aspects of the problem. Here we show that it is possible to achieve two models to represent the chain-solvent system. one of them with implicit and other with explicit solvent, such that both reproduce the same thermodynamic results. Firstly, lattice models treated by analytical methods, were used to show that the implicit and explicitly representation of solvent effects can be energetically equivalent only if local solvent properties are time and spatially invariant. Following, applying the same reasoning Used for the lattice models, two inter-consistent Monte Carlo off-lattice models for implicit and explicit solvent are constructed, being that now in the latter the solvent properties are allowed to fluctuate. Then, it is shown that the chain configurational evolution as well as the globule equilibrium conformation are significantly distinct for implicit and explicit solvent systems. Actually, strongly contrasting with the implicit solvent version, the explicit solvent model predicts: (i) a malleable globule, in agreement with the estimated large protein-volume fluctuations; (ii) thermal conformational stability, resembling the conformational hear resistance of globular proteins, in which radii of gyration are practically insensitive to thermal effects over a relatively wide range of temperatures; and (iii) smaller radii of gyration at higher temperatures, indicating that the chain conformational entropy in the unfolded state is significantly smaller than that estimated from random coil configurations. Finally, we comment on the meaning of these results with respect to the understanding of the folding process. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The protein phosphatase calcineurin is an important mediator connecting calcium-dependent signalling to various cellular responses in multiple organisms. In fungi calcineurin acts largely through regulating Crz1p-like transcription factors. Here we characterize an Aspergillus fumigatus CRZ1 homologue, CrzA and demonstrate its mediation of cellular tolerance to increased concentrations of calcium and manganese. In addition to acute sensitivitiy to these ions, and decreased conidiation, the crzA null mutant suffers altered expression of calcium transporter mRNAs under high concentrations of calcium, and loss of virulence when compared with the corresponding complemented and wild-type strains. We use multiple expression analyses to probe the transcriptional basis of A. fumigatus calcium tolerance identifying several genes having calA and/or crzA dependent mRNA accumulation patterns. We also demonstrate that contrary to previous findings, the gene encoding the Aspergillus nidulans calcineurin subunit homologue, cnaA, is not essential and that the cnaA deletion mutant shares the morphological phenotypes observed in the corresponding A. fumigatus mutant, Delta calA. Exploiting the A. nidulans model system, we have linked calcineurin activity with asexual developmental induction, finding that CrzA supports appropriate developmental induction in a calcineurin and brlA-dependent manner in both species.
Resumo:
Nucleotide excision repair (NER) eliminates helix-distorting DNA base lesions. Seven XP-deficient genetic complementation groups (XPA to XPG) have already been identified in mammals, and their corresponding genes have been cloned. Hereditary defects in NER are associated with several diseases, including xeroderma pigmentosum (XP). UV-DDB (XPE) is formed by two associated subunits, DDB1 and DDB2. UV-DDB was identified biochemically as a protein factor that exhibits very strong and specific binding to ultraviolet (UV)-treated DNA. As a preliminary step to characterize the components of the NER in the filamentous fungus Aspergillus nidulans, here we identified a putative DDB1 homologue, DdbA. Deletion and expression analysis indicated that A. nidulans ddbA gene is involved in the DNA damage response, more specifically in the UV light response and 4-nitroquinoline oxide (4-NQO) sensitivity. Furthermore, the Delta ddbA strain cannot self-cross and expression analysis showed that ddbA can be induced by oxidative stress and is developmentally regulated in both asexual and sexual processes. The Delta ddbA mutation can genetically interact with uvsB(ATR), atmA(ATM), nkuA(KU70), H2AX-S129A (a replacement of the conserved serine in the C-terminal of H2AX with alanine), and cshB (a mutation in CSB Cockayne`s syndrome protein involved in the transcription-coupled repair subpathway of NER) mutations. Finally, to determine the DdbA cellular localization, we constructed a GFP:DdbA strain. In the presence and absence of DNA damage, DdbA was mostly detected in the nuclei, indicating that DdbA localizes to nuclei and its cellular localization is not affected by the cellular response to DNA damage induced by 4-NQO and UV light.
Resumo:
Protein transduction domains (PTDs) were recently demonstrated to increase the penetration of the model peptide P20 when the PTD and P20 were covalently attached. Here, we evaluated whether non-covalently linked PTDs were capable of increasing the skin penetration of P20. Two different PTDs were studied: YARA and WLR. Porcine ear skin mounted in a Franz diffusion cell was used to assess the penetration of P20 in the stratum corneum (SC) and viable skin (VS); VS consists of dermis and epidermis without SC. The transdermal delivery of P20 was also assessed. At 1 mM, YARA promoted a 2.33-fold increase in the retention of P20 in the SC but did not significantly increase the amount of P20 that reached VS. WLR significantly increased (2.88-fold) the penetration of P20 in VS. Compared to the non-attached form, the covalently linked WLR fragment was two times more effective in promoting the penetration of P20 into VS. None of the PTDs promoted transdermal delivery of P20 at 4 h post-application. It was concluded that selected non-covalently linked PTDs can be used as a penetration enhancer, but greater skin penetration efficiency can be achieved by covalently binding the PTD to the therapeutic agent. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The effects of PLC and Pkc inhibitors on Aspergillus nidulans depend on the carbon source. PLC inhibitors Spm and C48/80 delayed the first nuclear division in cultures growing on glucose, but stimulated it in media supplemented with pectin. Less intense were these effects on the mutant transformed with PLC-A gene rupture (AP27). Neomycin also delayed the germination in cultures growing on glucose or pectin; however, on glucose, the nuclear division was inhibited whereas in pectin it was stimulated. These effects were minor in AP27. The effects of Ro-31-8425 and BIM (both Pkc inhibitors) were also opposite for cultures growing on glucose or pectin. On glucose cultures of both strains BIM delayed germination and the first nuclear division, whereas on pectin both parameters were stimulated. Opposite effects were also detected when the cultures were growing on glucose or pectin in the presence of Ro-31-8425.
Resumo:
Calcineurin plays an important role in the control of cell morphology and virulence in fungi. Calcineurin is a serine/threonine-specific protein phosphatase heterodimer consisting of a catalytic subunit A and a regulatory subunit B. A mutant of Aspergillus fumigatus lacking the calcineurin A (calA) catalytic subunit exhibited defective hyphal morphology related to apical extension and branching growth, which resulted in drastically decreased filamentation. Here, we investigated which pathways are influenced by A. fumigatus calcineurin during proliferation by comparatively determining the transcriptional profile of A. fumigatus wild type and Delta calA mutant strains. Our results showed that the mitochondrial copy number is reduced in the Delta calA mutant strain, and the mutant has increased alternative oxidase (aoxA) mRNA accumulation and activity. Furthermore, we identified four genes that encode transcription factors that have increased mRNA expression in the Delta calA mutant. Deletion mutants for these transcription factors had reduced susceptibility to itraconazole, caspofungin, and sodium dodecyl sulfate (SDS). (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Fungi, including the entomopathogenic deuteromycete Metarhizium anisopliae, produce a wide diversity of secondary metabolites that either can be secreted or stored in specific developmental structures, e.g., conidia. Some secondary metabolites, such as pigments, polyols and mycosporines, are associated with pathogenicity and/or fungal tolerance to several stress-inducing environmental factors, including temperature and solar radiation extremes. Extracts of M. anisopliae var. anisopliae (strain ESALQ-1037) conidia were purified by chromatographic procedures and the isolated compounds analyzed by (1)H and (13)C nuclear magnetic resonance spectroscopy and high-resolution mass spectrometry. LC-MS analyses were carried out to search for mycosporines (the initial targets), but no compounds of this class were detected. A molecule whose natural occurrence was previously undescribed was identified. It consists of betaine conjugated with tyrosine, and the structure was identified as 2-([1-carboxy-2-(4-hydroxyphenyl)ethyl]amino)-N,N,N-trimethyl-2-oxoethanammonium. mannitol was the predominant compound in the alcoholic conidial extract, but no amino acids other than tyrosine were found to be conjugated with betaine in conidia. The fungal tyrosine betaine was detected also in conidial extracts of three other M. anisopliae var. anisopliae (ARSEF 1095, 5626 and 5749) and three M. anisopliae var. acridum isolates (ARSEF 324, 3391 and 7486), but it was not detected in Aspergillus nidulans conidial extract (ATCC 10074). (C) 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Resumo:
Background: Periodontal disease has been associated with many chronic inflammatory systemic diseases, and a common chronic inflammation pathway has been suggested for these conditions. However, few studies have evaluated whether periodontal disease, in the absence of other known inflammatory conditions and smoking, affects circulating markers of chronic inflammation. This study compared chronic inflammation markers in control individuals and patients with periodontal disease and observed whether non-surgical periodontal therapy affected inflammatory disease markers after 3 months. Methods: Plasma and serum of 20 controls and 25 patients with periodontal disease were obtained prior to and 3 months after non-surgical periodontal therapy. All patients were non-smokers, they did not use any medication, and they had no history or detectable signs and symptoms of systemic diseases. Periodontal and systemic parameters included probing depth, bleeding on probing, clinical attachment level, hematologic parameters, as well as the following inflammatory markers: interleukin (IL)-6, high-sensitivity C-reactive protein (hs-CRP), CD40 ligand, monocyte chemoattractant protein (MCP)-1, soluble P-selectin (sP-selectin), soluble vascular adhesion molecule (sVCAM)-1, and soluble intercellular adhesion molecule (sICAM)-1. Results: There were no differences in the hematologic parameters of the patients in the control and periodontal disease groups. Among the tested inflammatory markers, IL-6 concentrations were higher in the periodontal disease group at baseline compared to the controls (P=0.006). Therapy was highly effective (P<0.001 for all the analyzed clinical parameters), and a decrease in circulating IL-6 and hs-CRP concentrations was observed 3 months after therapy (P=0.001 and P=0.006, respectively). Our results also suggest that the CD40 ligand marker may have been different in the control and periodontal disease groups prior to the therapy (P=0.009). Conclusions: In apparently otherwise healthy patients, periodontal disease is associated with increased circulating concentrations of IL-6 and hs-CRP, which decreased 3 months after non-surgical periodontal therapy. With regard to the CD40 ligand, MCP-1, sP-selectin, sVCAM-1, and sICAM-1, no changes were seen in the periodontal disease group between baseline and 3 months after therapy. J Periodontol 2009;80:594-602.