913 resultados para Oil well drilling.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantifying and characterising atomic defects in nanocrystals is difficult and low-throughput using the existing methods such as high resolution transmission electron microscopy (HRTEM). In this article, using a defocused wide-field optical imaging technique, we demonstrate that a single ultrahigh-piezoelectric ZnO nanorod contains a single defect site. We model the observed dipole-emission patterns from optical imaging with a multi-dimensional dipole and find that the experimentally observed dipole pattern and model-calculated patterns are in excellent agreement. This agreement suggests the presence of vertically oriented degenerate-transition-dipoles in vertically aligned ZnO nanorods. The HRTEM of the ZnO nanorod shows the presence of a stacking fault, which generates a localised quantum well induced degenerate-transition-dipole. Finally, we elucidate that defocused wide-field imaging can be widely used to characterise defects in nanomaterials to answer many difficult questions concerning the performance of low-dimensional devices, such as in energy harvesting, advanced metal-oxide-semiconductor storage, and nanoelectromechanical and nanophotonic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this second of the two-part study, the results of the Tank-to-Wheels study reported in the first part are combined with Well-to-Tank results in this paper to provide a comprehensive Well-to-Wheels energy consumption and greenhouse gas emissions evaluation of automotive fuels in India. The results indicate that liquid fuels derived from petroleum have Well-to-Tank efficiencies in the range of 75-85% with liquefied petroleum gas being the most efficient fuel in the Well-to-Tank stage with 85% efficiency. Electricity has the lowest efficiency of 20% which is mainly attributed due to its dependence on coal and 25.4% losses during transmission and distribution. The complete Well-to-Wheels results show diesel vehicles to be the most efficient among all configurations, specifically the diesel-powered split hybrid electric vehicle. Hydrogen engine configurations are the least efficient due to low efficiency of production of hydrogen from natural gas. Hybridizing electric vehicles reduces the Well-to-Wheels greenhouse gas emissions substantially with split hybrid configuration being the most efficient. Electric vehicles do not offer any significant improvement over gasoline-powered configurations; however a shift towards renewable sources for power generation and reduction in losses during transmission and distribution can make it a feasible option in the future. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments were performed, in a terrestrial environment, to study the migration and interaction of two drops with different diameters in matrix liquid under temperature gradient field. Pure soybean oil and silicon oil were used as matrix liquid and the drop liquid, respectively. The information on the motions of two drops was recorded by CCD camera system in the experiments to analyze the trajectories and velocities of the drops. Our experiments showed that, upon two drops approaching each other, the influence of the larger drop on the motion of the smaller one became significant. Meanwhile the smaller drop had a little influence on the larger one all the time. The oscillation of migration velocities of both drops was observed as they were approaching. For a short period the smaller drop even moved backward when it became side by side with the larger one during the migration. Although our experimental results on the behavior of two drops are basically consistent with the theoretical predictions, there are also apparent differences. 2006 Elsevier Ltd. All rights reserved. Keywords: Thermocapillary migration; Drop; Interaction; Oscillation 1. Introduction A bubble or drop will move when placed in another fluid with temperature gradient. This motion happens as a consequence of the variation of interfacial tension with temperature. Such a phenomenon is already known as Marangoni migration problem. With the development of microgravity science, bubble dynamics and droplet dynamics became a hot point problem of research because this investigation is very important for basic research as well as for applications in reduced gravity environment, such as space material science, chemical engineering and so on. Young et al. first investigated the thermocapillary migration of

Relevância:

20.00% 20.00%

Publicador:

Resumo:

介绍一种可应用于高粘度稠油管输的新工艺。即用自行研制的蒸汽引射器采用无界引射方式,将蒸汽直接注入到输油管道中,利用蒸汽释放的热量提高稠油温度降低粘度,从而达到降低稠油输送压降的目的,它比间接加热输送工艺所用的蒸汽量或耗煤量大大减少。方法在辽河油田输油管线上进行了工业现场试验,取得了很好的效果。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurement while drilling (MWD) has become a popular survey technology to monitor directional data, drilling data, formation evaluation data and safety data in the world. And closed loop drilling shows promise in recent years. Obviously, the method of tr

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Presented is an experimental study on the performance of an oil-gas multiphase transportation system, especially on the multiphase flow patterns, multiphase pumping and multiphase metering of the system. A dynamic simulation analysis is conducted to deduce simulation parameters of the system and similarity criteria under simplified conditions are obtained. The reliability and feasibility of two-phase flow experiment with oil and natural gas simulated by water and air are discussed by using the similarity criteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

UTT (Ultrasonic Tomography Tool) is widely used in the oil industry and can be used to inspect corrosion, casing wall damage, casing breakoff, and casing distortion in the well borehole with the maximum environment temperature being 125 °C, and the pressure being 60 MPa. UTT consists of tool head, upper centralization, electronic section, lower centralization, transmitters, and receivers. Its outer diameter is 4.6 cm and length is 320 cm. The measured casing diameter ranges from 60 mm to 254 mm. The tomography resolution is 512×512. The borehole measurement accuracy is 2 mm. It can supply 3D pipe tomography, including horizontal and vertical profile. This paper introduces its specification, measurement principle, and applications in oilfield.damage, casing breakoff, and casing distortion in the well borehole with the maximum environment temperature being 125 °C, and the pressure being 60 MPa. UTT consists of tool head, upper centralization, electronic section, lower centralization, transmitters, and receivers. Its outer diameter is 4.6 cm and length is 320 cm. The measured casing diameter ranges from 60 mm to 254 mm. The tomography resolution is 512×512. The borehole measurement accuracy is 2 mm. It can supply 3D pipe tomography, including horizontal and vertical profile. This paper introduces its specification, measurement principle, and applications in oilfield.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we report the design of high room temperature photoluminescence internal efficiency InGaN-based quantum well structures emitting in the near ultraviolet at 380 nm. To counter the effects of nonradiative recombination the quantum wells were designed to have a large indium fraction, high barriers, and a small quantum well thickness. To minimize the interwell and interbarrier thickness fluctuations we used Al0.2In0.005Ga0.795N barriers, where the inclusion of the small fraction of indium was found to lead to fewer structural defects and a reduction in the layer thickness fluctuations. This approach has led us to achieve, for an In0.08Ga0.92N/Al0.2In0.005Ga0.795N multiple quantum well structure with a well width of 1.5 nm, a photoluminescence internal efficiency of 67% for peak emission at 382 nm at room temperature. (c) 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the optical properties of a series of InGaN/AlInGaN 10-period multiple quantum wells (MQW) with differing well thickness grown by metal-organic vapor-phase epitaxy that emit at around 380 nm. The aim of this investigation was to optimise the room temperature internal quantum efficiency, thus the quantum well (QW) thicknesses were accordingly chosen so that the overlap of the electron/hole wave function was maximised. At low temperature, we observed a reduction of the photo luminescence decay time with decreasing well width in line with the theoretical predictions. For a structure with well thicknesses of 1.5 nm, we measured a photoluminescence internal quantum efficiency of 67% at room temperature with a peak emission wavelength of 382 nm. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We reported here a novel technique for laser high speed drillings on Printed Circuit Boards (PCBs). A CNC solid laser based system is developed to drill through and blind vias as an alternative to mechanical drilling. The system employs an Acousto-Optic Q-switched Nd: YAG laser, a computer control system and an X-Y moving table which can handle up to 400 x 400 mm PCB. With a special designed cavity the laser system works in a pulsed operation in order to generate pulses with width down to 0.5 mu s and maximum peak power over 10kW at 10k repetition rate. Delivered by an improved optical beam transforming system, the focused laser beam can drill hobs including blind vias on PCBs with diameter in the range of 0.1 - 0.4 mm and at up to 300 - 500 vias per second (depending on the construction of PCBs). By means of a CNC X-Y moving system, laser pulses with pulse-to-pulse superior repeatability can be fired at desired location on a PCBs with high accuracy. This alternative technology for drilling through or blind vias on PCBs or PWBs (printed wiring boards) will obviously enhance the capability to printed boards manufacturing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical approach to optimize dimensionless parameters of water-flooding porous media flows is proposed based on the analysis of the sensitivity factor defined as the variation ration of a target function with respect to the variation of dimensionless parameters. A complete set of scaling criteria for water-flooding reservoir of five-spot well pattern case is derived from the 3-D governing equations, involving the gravitational force, the capillary force and the compressibility of water, oil and rock. By using this approach, we have estimated the influences of each dimensionless parameter on experimental results and thus sorted out the dominant ones with larger sensitivity factors ranging from10-4to10-0 .

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the theory of the pumping well test, the transient injection well test was suggested in this paper. The design method and the scope of application are discussed in detail. The mathematical models are developed for the short-time and long-time transient injection test respectively. A double logarithm type curve matching method was introduced for analyzing the field transient injection test data. A set of methods for the transient injection test design, experiment performance and data analysis were established. Some field tests were analyzed, and the results show that the test model and method are suitable for the transient injection test and can be used to deal with the real engineering problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical simulation of an oil slick spreading on still and wavy surfaces is described in this paper. The so-called sigma transformation is used to transform the time-varying physical domain into a fixed calculation domain for the water wave motions and, at the same time, the continuity equation is changed into an advection equation of wave elevation. This evolution equation is discretized by the forward time and central space scheme, and the momentum equations by the projection method. A damping zone is set up in front of the outlet boundary coupled with a Sommerfeld-Orlanski condition at that boundary to minimize the wave reflection. The equations for the oil slick are depth-averaged and coupled with the water motions when solving numerically. As examples, sinusoidal and solitary water waves, the oil spread on a smooth plane and on still and wavy water surfaces are calculated to examine the accuracy of simulating water waves by Navier-Stokes equations, the effect of damping zone on wave reflection and the precise structures of oil spread on waves.