901 resultados para Nonlinear Model
Resumo:
In this work we propose a NLSE-based model of power and spectral properties of the random distributed feedback (DFB) fiber laser. The model is based on coupled set of non-linear Schrödinger equations for pump and Stokes waves with the distributed feedback due to Rayleigh scattering. The model considers random backscattering via its average strength, i.e. we assume that the feedback is incoherent. In addition, this allows us to speed up simulations sufficiently (up to several orders of magnitude). We found that the model of the incoherent feedback predicts the smooth and narrow (comparing with the gain spectral profile) generation spectrum in the random DFB fiber laser. The model allows one to optimize the random laser generation spectrum width varying the dispersion and nonlinearity values: we found, that the high dispersion and low nonlinearity results in narrower spectrum that could be interpreted as four-wave mixing between different spectral components in the quasi-mode-less spectrum of the random laser under study could play an important role in the spectrum formation. Note that the physical mechanism of the random DFB fiber laser formation and broadening is not identified yet. We investigate temporal and statistical properties of the random DFB fiber laser dynamics. Interestingly, we found that the intensity statistics is not Gaussian. The intensity auto-correlation function also reveals that correlations do exist. The possibility to optimize the system parameters to enhance the observed intrinsic spectral correlations to further potentially achieved pulsed (mode-locked) operation of the mode-less random distributed feedback fiber laser is discussed.
Resumo:
The nonlinear inverse synthesis (NIS) method, in which information is encoded directly onto the continuous part of the nonlinear signal spectrum, has been proposed recently as a promising digital signal processing technique for combating fiber nonlinearity impairments. However, because the NIS method is based on the integrability property of the lossless nonlinear Schrödinger equation, the original approach can only be applied directly to optical links with ideal distributed Raman amplification. In this paper, we propose and assess a modified scheme of the NIS method, which can be used effectively in standard optical links with lumped amplifiers, such as, erbium-doped fiber amplifiers (EDFAs). The proposed scheme takes into account the average effect of the fiber loss to obtain an integrable model (lossless path-averaged model) to which the NIS technique is applicable. We found that the error between lossless pathaveraged and lossy models increases linearly with transmission distance and input power (measured in dB). We numerically demonstrate the feasibility of the proposed NIS scheme in a burst mode with orthogonal frequency division multiplexing (OFDM) transmission scheme with advanced modulation formats (e.g., QPSK, 16QAM, and 64QAM), showing a performance improvement up to 3.5 dB; these results are comparable to those achievable with multi-step per span digital backpropagation.
Resumo:
A theoretical model is developed to describe the propagation of ultra-short optical pulses in fiber transmission systems in the quasi-linear regime, with periodically inserted in-line lumped nonlinear optical devices. Stable autosoliton solutions are obtained for a particular application of the general theory.
Resumo:
The inverse controller is traditionally assumed to be a deterministic function. This paper presents a pedagogical methodology for estimating the stochastic model of the inverse controller. The proposed method is based on Bayes' theorem. Using Bayes' rule to obtain the stochastic model of the inverse controller allows the use of knowledge of uncertainty from both the inverse and the forward model in estimating the optimal control signal. The paper presents the methodology for general nonlinear systems and is demonstrated on nonlinear single-input-single-output (SISO) and multiple-input-multiple-output (MIMO) examples. © 2006 IEEE.
Resumo:
In nonlinear and stochastic control problems, learning an efficient feed-forward controller is not amenable to conventional neurocontrol methods. For these approaches, estimating and then incorporating uncertainty in the controller and feed-forward models can produce more robust control results. Here, we introduce a novel inversion-based neurocontroller for solving control problems involving uncertain nonlinear systems which could also compensate for multi-valued systems. The approach uses recent developments in neural networks, especially in the context of modelling statistical distributions, which are applied to forward and inverse plant models. Provided that certain conditions are met, an estimate of the intrinsic uncertainty for the outputs of neural networks can be obtained using the statistical properties of networks. More generally, multicomponent distributions can be modelled by the mixture density network. Based on importance sampling from these distributions a novel robust inverse control approach is obtained. This importance sampling provides a structured and principled approach to constrain the complexity of the search space for the ideal control law. The developed methodology circumvents the dynamic programming problem by using the predicted neural network uncertainty to localise the possible control solutions to consider. A nonlinear multi-variable system with different delays between the input-output pairs is used to demonstrate the successful application of the developed control algorithm. The proposed method is suitable for redundant control systems and allows us to model strongly non-Gaussian distributions of control signal as well as processes with hysteresis. © 2004 Elsevier Ltd. All rights reserved.
Resumo:
MSC 2010: 34A08 (main), 34G20, 80A25
Resumo:
Дойчин Бояджиев, Галена Пеловска - В статията се предлага оптимизиран алгоритъм, който е по-бърз в сравнение с по- рано описаната ускорена (модифицирана STS) диференчна схема за възрастово структуриран популационен модел с дифузия. Запазвайки апроксимацията на модифицирания STS алгоритъм, изчислителното времето се намаля почти два пъти. Това прави оптимизирания метод по-предпочитан за задачи с нелинейност или с по-висока размерност.
Resumo:
2000 Mathematics Subject Classification: 60G70, 60F05.
Resumo:
2000 Mathematics Subject Classification: Primary: 62M10, 62J02, 62F12, 62M05, 62P05, 62P10; secondary: 60G46, 60F15.
Resumo:
2000 Mathematics Subject Classification: 65H10.
Resumo:
The quantization scheme is suggested for a spatially inhomogeneous 1+1 Bianchi I model. The scheme consists in quantization of the equations of motion and gives the operator (so called quasi-Heisenberg) equations describing explicit evolution of a system. Some particular gauge suitable for quantization is proposed. The Wheeler-DeWitt equation is considered in the vicinity of zero scale factor and it is used to construct a space where the quasi-Heisenberg operators act. Spatial discretization as a UV regularization procedure is suggested for the equations of motion.
Resumo:
We develop a theoretical framework for modeling of continuous wave Yb-doped fiber lasers with highly nonlinear cavity dynamics. The developed approach has shown good agreement between theoretical predictions and experimental results for particular scheme of Yb-doped laser with large spectral broadening during single round trip. The model is capable to accurately describe main features of the experimentally measured laser outputs such as power efficiency slope, power leakage through fibre Bragg gratings, spectral broadening and spectral shape of generated radiation. © 2011 Optical Society of America.
Resumo:
How are the image statistics of global image contrast computed? We answered this by using a contrast-matching task for checkerboard configurations of ‘battenberg’ micro-patterns where the contrasts and spatial spreads of interdigitated pairs of micro-patterns were adjusted independently. Test stimuli were 20 × 20 arrays with various sized cluster widths, matched to standard patterns of uniform contrast. When one of the test patterns contained a pattern with much higher contrast than the other, that determined global pattern contrast, as in a max() operation. Crucially, however, the full matching functions had a curious intermediate region where low contrast additions for one pattern to intermediate contrasts of the other caused a paradoxical reduction in perceived global contrast. None of the following models predicted this: RMS, energy, linear sum, max, Legge and Foley. However, a gain control model incorporating wide-field integration and suppression of nonlinear contrast responses predicted the results with no free parameters. This model was derived from experiments on summation of contrast at threshold, and masking and summation effects in dipper functions. Those experiments were also inconsistent with the failed models above. Thus, we conclude that our contrast gain control model (Meese & Summers, 2007) describes a fundamental operation in human contrast vision.
Resumo:
We investigate the mobility of nonlinear localized modes in a generalized discrete Ginzburg-Landau-type model, describing a one-dimensional waveguide array in an active Kerr medium with intrinsic, saturable gain and damping. It is shown that exponentially localized, traveling discrete dissipative breather-solitons may exist as stable attractors supported only by intrinsic properties of the medium, i.e., in the absence of any external field or symmetry-breaking perturbations. Through an interplay by the gain and damping effects, the moving soliton may overcome the Peierls-Nabarro barrier, present in the corresponding conservative system, by self-induced time-periodic oscillations of its power (norm) and energy (Hamiltonian), yielding exponential decays to zero with different rates in the forward and backward directions. In certain parameter windows, bistability appears between fast modes with small oscillations and slower, large-oscillation modes. The velocities and the oscillation periods are typically related by lattice commensurability and exhibit period-doubling bifurcations to chaotically "walking" modes under parameter variations. If the model is augmented by intersite Kerr nonlinearity, thereby reducing the Peierls-Nabarro barrier of the conservative system, the existence regime for moving solitons increases considerably, and a richer scenario appears including Hopf bifurcations to incommensurately moving solutions and phase-locking intervals. Stable moving breathers also survive in the presence of weak disorder. © 2014 American Physical Society.
Resumo:
The small-scale energy-transfer mechanism in zero-temperature superfluid turbulence of helium-4 is still a widely debated topic. Currently, the main hypothesis is that weakly nonlinear interacting Kelvin waves (KWs) transfer energy to sufficiently small scales such that energy is dissipated as heat via phonon excitations. Theoretically, there are at least two proposed theories for Kelvin-wave interactions. We perform the most comprehensive numerical simulation of weakly nonlinear interacting KWs to date and show, using a specially designed numerical algorithm incorporating the full Biot-Savart equation, that our results are consistent with the nonlocal six-wave KW interactions as proposed by L'vov and Nazarenko.