891 resultados para Nitric oxide synthase 3 polymorphisms
Resumo:
L’arthrose ou ostéoarthrose (OA) est l’affection rhumatologique la plus fréquente au monde. Elle est caractérisée principalement par une perte du cartilage articulaire et l’inflammation de la membrane synoviale. L’interleukine (IL)-1ß, une cytokine pro-inflammatoire, joue un rôle très important dans la pathogenèse de l’OA. Elle exerce son action en induisant l’expression des enzymes cyclo-oxygénase 2 (COX-2), prostaglandine E synthétase microsomale 1 (mPGES-1) et l’oxyde nitrique synthétase inductible (iNOS) ainsi que la production de la prostaglandine E2 (PGE2) et de l’oxyde nitrique (NO). Ces derniers (PGE2 et NO) contribuent à la synovite et la destruction du cartilage articulaire par leurs effets pro-inflammatoires, pro-cataboliques, anti-anaboliques, pro-angiogéniques et pro-apoptotiques. Les modifications épigénétiques, telles que la méthylation de l’ADN, et l’acétylation et la méthylation des histones, jouent un rôle crucial dans la régulation de l’expression des gènes. Parmi ces modifications, l’acétylation des histones est la plus documentée. Ce processus est contrôlé par deux types d’enzymes : les histones acétyltransférases (HAT) qui favorisent la transcription et les histones déacétylases (HDAC) qui l’inhibent. L’objectif de ce travail est d’examiner le rôle des enzymes HDAC dans la régulation de l’expression de la COX-2, mPGES-1 et iNOS. Nous avons montré qu’au niveau des chondrocytes, les inhibiteurs des HDAC (iHDAC), trichostatine A (TSA) et butyrate de sodium (NaBu), suppriment l’expression de la COX-2 et iNOS au niveau de l’ARNm et protéique, ainsi que la production de la PGE2 et du NO, induites par l’IL-1ß. L’effet inhibiteur à lieu sans affecter l’activité de liaison à l’ADN du facteur de transcription NF-κB (nuclear factor κ B). La TSA et le NaBu inhibent également la dégradation induite par l’IL-1ß des protéoglycanes au niveau du cartilage. Nous avons également montré, qu’au niveau des fibroblastes synoviaux, les iHDAC, TSA, NaBu et acide valproïque (VA), suppriment l’expression de la mPGES-1 ainsi que la production de la PGE2 induites par l’IL-1ß. En utilisant diverses approches expérimentales, nous avons montré que HDAC4 est impliquée dans l’induction de l’expression de la mPGES-1 par l’IL-1ß. HDAC4 exerce son action, via son activité déacétylase, en augmentant l’activité transcriptionnelle de Egr-1 (early growth factor 1), facteur de transcription principal de l’expression de la mPGES-1. L’ensemble de ces résultats suggère que les inhibiteurs des HDAC pourraient être utilisés dans le traitement de l’OA.
Resumo:
L'arthrose (OA) est une maladie articulaire dégénérative, classée comme la forme la plus fréquente au monde. Elle est caractérisée par la dégénérescence du cartilage articulaire, l’inflammation de la membrane synoviale, et le remodelage de l’os sous-chondral. Ces changements structurels et fonctionnels sont dues à de nombreux facteurs. Les cytokines, les prostaglandines (PG), et les espèces réactives de l'oxygène sont les principaux médiateurs impliqués dans la pathophysiologie de l'OA. L'interleukine-1β (IL-1β) est une cytokine pro-inflammatoire majeure qui joue un rôle crucial dans l'OA. L'IL-1β induit l'expression de la cyclooxygénase-2 (COX-2), la microsomale prostaglandine E synthase-1 (mPGES-1), la synthase inductible de l'oxyde nitrique (iNOS), ainsi que leurs produits la prostaglandine E2 (PGE2) et l'oxyde nitrique (NO). Ce sont des médiateurs essentiels de la réponse inflammatoire au cours de l'OA qui contribuent aux mécanismes des douleurs, de gonflement, et de destruction des tissus articulaires. Les modifications épigénétiques jouent un rôle très important dans la régulation de l’expression de ces gènes pro-inflammatoires. Parmi ces modifications, la méthylation/ déméthylation des histones joue un rôle critique dans la régulation des gènes. La méthylation/ déméthylation des histones est médiée par deux types d'enzymes: les histones méthyltransférases (HMT) et les histones déméthylases (HDM) qui favorisent l’activation et/ou la répression de la transcription. Il est donc nécessaire de comprendre les mécanismes moléculaires qui contrôlent l’expression des gènes de la COX-2, la mPGES-1, et l’iNOS. L'objectif de cette étude est de déterminer si la méthylation/déméthylation des histones contribute à la régulation de l’expression des gènes COX-2, mPGES-1, et iNOS dans des chondrocytes OA humains induits par l'IL-1β. Nous avons montré que la méthylation de la lysine K4 de l'histone H3 (H3K4) par SET-1A contribue à l’activation des gènes COX-2 et iNOS dans les chondrocytes humains OA induite par l'IL-1β. Nous avons également montré que la lysine K9 de l’histone H3 (H3K9) est déméthylée par LSD1, et que cette déméthylation contribue à l’expression de la mPGES-1 induite par IL-1β dans les chondrocytes humains OA. Nous avons aussi trouvé que les niveaux d'expression des enzymes SET-1A et LSD1 sont élevés au niveau du cartilage OA. Nos résultats montrent, pour la première fois, l'implication de la méthylation/ déméthylation des histones dans la régulation de l’expression des gènes COX-2, mPGES-1, et iNOS. Ces données suggèrent que ces mécanismes pourraient être une cible potentielle pour une intervention pharmacologique dans le traitement de la physiopathologie de l'OA.
Resumo:
There has been much recent interest in the cardiovascular benefits of dietary isoflavones. The aim of the present in vitro studies was to investigate potential anti-thrombogenic and anti-atherogenic effects of the isoflavones genistein and daidzein in platelets, macrophages and endothelial cells. Pre-treatment with either isoflavone inhibited collagen-induced platelet aggregation in a dose-dependent manner. In a macrophage cell line (RAW 264-7) activated with interferon gamma plus lipopolysaccharide, both isoflavones were found to inhibit NO production and tumour necrosis factor alpha (TNF-alpha) secretion dose-dependently, but they did not affect mRNA levels for inducible nitric oxide synthase and cyclo-oxygenase-2. Both isoflavones also dose-dependently decreased monocyte chemoattractant protein-1 secretion induced by TNF-alpha in human umbilical vein endothelial cells. Compared with daidzein, genistein exerted greater inhibitory effects for all parameters studied. The present data contributes to our knowledge on the molecular mechanisms by which isoflavones may protect against coronary artery disease. Further studies are required to determine whether the effects of isoflavones observed in the current in vitro studies are relevant to the aetiology of coronary artery disease in vivo.
Resumo:
There has been much recent interest in the cardiovascular benefits of dietary isoflavones. The aim of the present in vitro studies was to investigate potential anti-thrombogenic and anti-atherogenic effects of the isoflavones genistein and daidzein in platelets, macrophages and endothelial cells. Pre-treatment with either isoflavone inhibited collagen-induced platelet aggregation in a dose-dependent manner. In a macrophage cell line (RAW 264-7) activated with interferon gamma plus lipopolysaccharide, both isoflavones were found to inhibit NO production and tumour necrosis factor alpha (TNF-alpha) secretion dose-dependently, but they did not affect mRNA levels for inducible nitric oxide synthase and cyclo-oxygenase-2. Both isoflavones also dose-dependently decreased monocyte chemoattractant protein-1 secretion induced by TNF-alpha in human umbilical vein endothelial cells. Compared with daidzein, genistein exerted greater inhibitory effects for all parameters studied. The present data contributes to our knowledge on the molecular mechanisms by which isoflavones may protect against coronary artery disease. Further studies are required to determine whether the effects of isoflavones observed in the current in vitro studies are relevant to the aetiology of coronary artery disease in vivo.
Resumo:
Endothelium-derived hyperpolarizing factor responses in the rat middle cerebral artery are blocked by inhibiting IKCa channels alone, contrasting with peripheral vessels where block of both IKCa and SKCa is required. As the contribution of IKCa and SKCa to endothelium-dependent hyperpolarization differs in peripheral arteries, depending on the level of arterial constriction, we investigated the possibility that SKCa might contribute to equivalent hyperpolarization in cerebral arteries under certain conditions. METHODS: Rat middle cerebral arteries (approximately 175 microm) were mounted in a wire myograph. The effect of KCa channel blockers on endothelium-dependent responses to the protease-activated receptor 2 agonist, SLIGRL (20 micromol/L), were then assessed as simultaneous changes in tension and membrane potential. These data were correlated with the distribution of arterial KCa channels revealed with immunohistochemistry. RESULTS: SLIGRL hyperpolarized and relaxed cerebral arteries undergoing variable levels of stretch-induced tone. The relaxation was unaffected by specific inhibitors of IKCa (TRAM-34, 1 micromol/L) or SKCa (apamin, 50 nmol/L) alone or in combination. In contrast, the associated smooth-muscle hyperpolarization was inhibited, but only with these blockers in combination. Blocking nitric oxide synthase (NOS) or guanylyl cyclase evoked smooth-muscle depolarization and constriction, with both hyperpolarization and relaxation to SLIGRL being abolished by TRAM-34 alone, whereas apamin had no effect. Immunolabeling showed SKCa and IKCa within the endothelium. CONCLUSIONS: In the absence of NO, IKCa underpins endothelium-dependent hyperpolarization and relaxation in cerebral arteries. However, when NOS is active SKCa contributes to hyperpolarization, whatever the extent of background contraction. These changes may have relevance in vascular disease states where NO release is compromised and when the levels of SKCa expression may be altered.
Resumo:
A nitric oxide synthase (NOS)-like activity has been demonstrated in human red blood cells (RBCs), but doubts about its functional significance, isoform identity and disease relevance remain. Using flow cytometry in combination with the NO-imaging probe DAF-FM we find that all blood cells form NO intracellularly, with a rank order of monocytes > neutrophils > lymphocytes > RBCs > platelets. The observation of a NO-related fluorescence within RBCs was unexpected given the abundance of the NO-scavenger oxyhemoglobin. Constitutive normoxic NO formation was abolished by NOS inhibition and intracellular NO scavenging, confirmed by laser-scanning microscopy and unequivocally validated by detection of the DAF-FM reaction product with NO using HPLC and LC-MS/MS. Employing immunoprecipitation, ESI-MS/MS-based peptide sequencing and enzymatic assay we further demonstrate that human RBCs contain an endothelial NOS (eNOS) that converts L-3H-Arginine to L-3H-Citrulline in a Ca2+/Calmodulin-dependent fashion. Moreover, in patients with coronary artery disease, red cell eNOS expression and activity are both lower than in age-matched healthy individuals and correlate with the degree of endothelial dysfunction. Thus, human RBCs constitutively produce NO under normoxic conditions via an active eNOS isoform the activity of which is compromised in patients with coronary artery disease.
Expression and function of the bile acid receptor GpBAR1 (TGR5) in the murine enteric nervous system
Resumo:
BACKGROUND: Bile acids (BAs) regulate cells by activating nuclear and membrane-bound receptors. G protein coupled bile acid receptor 1 (GpBAR1) is a membrane-bound G-protein-coupled receptor that can mediate the rapid, transcription-independent actions of BAs. Although BAs have well-known actions on motility and secretion, nothing is known about the localization and function of GpBAR1 in the gastrointestinal tract. METHODS: We generated an antibody to the C-terminus of human GpBAR1, and characterized the antibody by immunofluorescence and Western blotting of HEK293-GpBAR1-GFP cells. We localized GpBAR1 immunoreactivity (IR) and mRNA in the mouse intestine, and determined the mechanism by which BAs activate GpBAR1 to regulate intestinal motility. KEY RESULTS: The GpBAR1 antibody specifically detected GpBAR1-GFP at the plasma membrane of HEK293 cells, and interacted with proteins corresponding in mass to the GpBAR1-GFP fusion protein. GpBAR1-IR and mRNA were detected in enteric ganglia of the mouse stomach and small and large intestine, and in the muscularis externa and mucosa of the small intestine. Within the myenteric plexus of the intestine, GpBAR1-IR was localized to approximately 50% of all neurons and to >80% of inhibitory motor neurons and descending interneurons expressing nitric oxide synthase. Deoxycholic acid, a GpBAR1 agonist, caused a rapid and sustained inhibition of spontaneous phasic activity of isolated segments of ileum and colon by a neurogenic, cholinergic and nitrergic mechanism, and delayed gastrointestinal transit. CONCLUSIONS & INFERENCES: G protein coupled bile acid receptor 1 is unexpectedly expressed in enteric neurons. Bile acids activate GpBAR1 on inhibitory motor neurons to release nitric oxide and suppress motility, revealing a novel mechanism for the actions of BAs on intestinal motility.
Resumo:
Although contraction of human isolated bronchi is mediated mainly by tachykinin NK2 receptors, NK1 receptors, via prostanoid release, contract small-size (approximately 1 mm in diameter) bronchi. Here, we have investigated the presence and biological responses of NK1 receptors in medium-size (2-5 mm in diameter) human isolated bronchi. Specific staining was seen in bronchial sections with an antibody directed against the human NK1 receptor. The selective NK1 receptor agonist, [Sar(9), Met(O2)(11)]SP, contracted about 60% of human isolated bronchial rings. This effect was reduced by two different NK1 receptor antagonists, CP-99,994 and SR 140333. Contraction induced by [Sar(9), Met(O2)(11)]SP was independent of acetylcholine and histamine release and epithelium removal, and was not affected by nitric oxide synthase and cyclooxygenase (COX) inhibition. [Sar(9), Met(O2)(11)]SP increased inositol phosphate (IP) levels, and SR 140333 blocked this increase, in segments of medium- and small-size (approximately 1 mm in diameter) human bronchi. COX inhibition blocked the IP increase induced by [Sar(9), Met(O2)(11)]SP in small-size, but not in medium-size, bronchi. NK1 receptors mediated bronchoconstriction in a large proportion of medium-size human bronchi. Unlike small-size bronchi this effect is independent of prostanoid release, and the results are suggestive of a direct activation of smooth muscle receptors and IP release.
Resumo:
Objective. The objective of this study was to evaluate the effect of a calcium hydroxide Ca(OH)(2)-based paste (Calen) associated or not to 0.4% chlorhexidine digluconate (CHX) on RAW 264.7 macrophage cell line culture. Study design. The cell viability (MTT assay), immunostimulating properties (NO dosage), and anti-inflammatory properties (NO, TNF-alpha, and IL-1 alpha dosage) were evaluated after cell exposure to the materials. Data were analyzed statistically by Kruskal-Wallis test at 5% significance level. Results. There was low immunostimulating activity of the Calen paste associated or not to 0.4% CHX in the different materials` concentrations evaluated (P > .05). Anti-inflammatory activity with inhibition of NO and cytokine (TNF-alpha and IL1-alpha) release was observed only with Ca(OH)(2) + CHX at the highest concentration (25 mu g/mL). Conclusion. As the Calen paste associated to 0.4% CHX did not alter cell viability or the immunostimulating and anti-inflammatory properties, the addition of CHX brought no benefits to the Ca(OH)(2)-based paste with regard to the tested parameters. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008;106:e44-e51)
Resumo:
Background. Obstructive nephropathy decreases renal blood flow (RBF) and glomerular filtration rate (GFR), causing tubular abnormalities, such as urinary concentrating defect, as well as increasing oxidative stress. This study aimed to evaluate the effects of N-acetylcysteine (NAC) on renal function, as well as on the protein expression of aquaporin 2 (AQP2) and endothelial nitric oxide synthase (eNOS), after the relief of bilateral ureteral obstruction (BUO). Methods. Adult male Wistar rats were divided into four groups: sham (sham operated); sham operated + 440 mg/kg body weight (BW) of NAC daily in drinking water, started 2 days before and maintained until 48 h after the surgery; BUO (24-h BUO only); BUO + NAC-pre (24-h BUO plus 440 mg/kg BW of NAC daily in drinking water started 2 days before BUO); and BUO + NAC-post (24-h BUO plus 440 mg/kg BW of NAC daily in drinking water started on the day of BUO relief). Experiments were conducted 48 h after BUO relief. Results. Serum levels of thiobarbituric reactive substances, which are markers of lipid peroxidation, were significantly lower in NAC-treated rats than in the BUO group rats. The administration of NAC provided significant protection against post-BUO GFR drops and reductions in RBF. Renal cortices and BUO rats presented decreased eNOS protein expression of eNOS in the renal cortex of BUO group rats, whereas it was partially recovered in BUO + NAC-pre group rats. Urine osmolality was significantly lower in BUO rats than in sham group rats or NAC-treated rats, the last also presenting less interstitial fibrosis. Post-BUO downregulation of AQP2 protein expression was averted in the BUO + NAC-pre group rats. Conclusions. This study demonstrates that NAC administration ameliorates the renal function impairment observed 48 h after the relief of 24-h BUO. Oxidative stress is important for the suppression of GFR, RBF, tissue AQP2 and eNOS in the polyuric phase after the release of BUO.
Resumo:
This study alms at observing the effect of low-density lipoprotein (LDL) receptor deficiency in cholesterol blood levels, baroreflex sensitivity (BRS), nitric oxide (NO) bioavailability, and oxidative stress. The lack of LDL receptors in mice significantly increased the cholesterol blood levels (179 +/- 35 vs. 109 +/- 13 mg/dL) in the knockout (KO) mice compared to control. There was no difference in basal mean arterial pressure and heart rate between the groups. However, in KO mice the BRS was significantly attenuated and the antioxidant enzyme activities, measured in erythrocytes and heart, were significantly decreased. On the other hand, the oxidative damage measured by chemiluminescence and carbonyls was increased, while total plasma nitrate levels were lower in KO mice, indicating a decrease in NO availability. In conclusion, these results indicate that the lack of LDL receptor increased cholesterol blood levels, induced oxidative stress and decreased BRS. (C) 2008 Elsevier GmbH. All rights reserved.
Resumo:
Role of reactive oxygen species (ROS)/nitric oxide (NO) balance and renin-angiotensin system in mediating cardiac hypertrophy in hyperthyroidism was evaluated in an in vivo and in vitro experimental model. Male Wistar rats were divided into four groups: control, thyroid hormone, vitamin E (or Trolox, its hydrosoluble analogue), thyroid hormone + vitamin E. Angiotensin II receptor (AT1/AT2) gene expression, immunocontent of AT1/AT2 receptors, angiotensinogen, NADPH oxidase (Nox2), and nitric oxide synthase isoforms, as well as ROS concentration (hydrogen peroxide and superoxide anion) were quantified in myocardium. Thyroid hormone increased ROS and NO metabolites, iNOS, nNOS and eNOS isoforms and it was accompanied by cardiac hypertrophy. AT1/AT2 expression and the immunocontent of angiotensinogen and Nox2 were enhanced by thyroid hormone. Antioxidants reduced ROS levels, Nox2, AT1/AT2, NOS isoforms and cardiac hypertrophy. In conclusion, ROS/NO balance may play a role in the control of thyroid hormone-induced cardiac hypertrophy mediated by renin-angiotensin system. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Damage following ischemia and reperfusion (I/R) is common in the intestine and can be caused during abdominal surgery, in several disease states and following intestinal transplantation. Most studies have concentrated on damage to the mucosa, although published evidence also points to effects on neurons. Moreover, alterations of neuronally controlled functions of the intestine persist after I/R. The present study was designed to investigate the time course of damage to neurons and the selectivity of the effect of I/R damage for specific types of enteric neurons. A branch of the superior mesenteric artery supplying the distal ileum of anesthetised guinea pigs was occluded for 1 h and the animals were allowed to recover for 2 h to 4 weeks before tissue was taken for the immunohistochemical localization of markers of specific neuron types in tissues from sham and I/R animals. The dendrites of neurons with nitric oxide synthase (NOS) immunoreactivity, which are inhibitory motor neurons and interneurons, were distorted and swollen by 24 h after I/R and remained enlarged up to 28 days. The total neuron profile areas (cell body plus dendrites) increased by 25%, but the sizes of cell bodies did not change significantly. Neurons of type II morphology (intrinsic primary afferent neurons), revealed by NeuN immunoreactivity, were transiently reduced in cell size, at 24 h and 7 days. These neurons also showed signs of minor cell surface blebbing. Calretinin neurons, many of which are excitatory motor neurons, were unaffected. Thus, this study revealed a selective damage to NOS neurons that was observed at 24 h and persisted up to 4 weeks, without a significant change in the relative numbers of NOS neurons.
Resumo:
Purpose We investigated the effects of ischemia/reperfusion in the intestine (I/R-i) on purine receptor P2X(2)-immunoreactive (IR) neurons of the rat ileum. Methods The superior mesenteric artery was occluded for 45 min with an atraumatic vascular clamp and animals were sacrificed 4 h later. Neurons of the myenteric and submucosal plexuses were evaluated for immunoreactivity against the P2X(2) receptor, nitric oxide synthase (NOS), choline acetyl transferase (ChAT), calbindin, and calretinin. Results Following I/R-i, we observed a decrease in P2X(2) receptor immunoreactivity in the cytoplasm and surface membranes of neurons of the myenteric and submucosal plexuses. These studies also revealed an absence of calbindin-positive neurons in the I/R-i group. In addition, the colocalization of the P2X(2) receptor with NOS, ChAT, and calretinin immunoreactivity in the myenteric plexus was decreased following I/R-i. Likewise, the colocalization between P2X(2) and calretinin in neurons of the submucosal plexus was also reduced. In the I/R-i group, there was a 55.8% decrease in the density of neurons immunoreactive (IR) for the P2X(2) receptor, a 26.4% reduction in NOS-IR neuron, a 25% reduction in ChAT-IR neuron, and a 47% reduction in calretinin-IR neuron. The density of P2X(2) receptor and calretinin-IR neurons also decreased in the submucosal plexus of the I/R-i group. In the myenteric plexus, P2X(2)-IR, NOS-IR, ChAT-IR and calretinin-IR neurons were reduced in size by 50%, 49.7%, 42%, and 33%, respectively, in the I/R-i group; in the submucosal plexus, P2X(2)-IR and calretinin-IR neurons were reduced in size by 56% and 72.6%, respectively. Conclusions These data demonstrate that ischemia/reperfusion of the intestine affects the expression of the P2X(2) receptor in neurons of the myenteric and submucosal plexus, as well as density and size of neurons in this population. Our findings indicate that I/R-i induces changes in P2X(2)-IR enteric neurons that could result in alterations in intestinal motility.
Resumo:
The architecture of the amygdaloid complex of a marsupial, the opossum Didelphis aurita, was analyzed using classical stains like Nissl staining and myelin (Gallyas) staining, and enzyme histochemistry for acetylcholinesterase and NADPH-diaphorase. Most of the subdivisions of the amygdaloid complex described in eutherian mammals were identified in the opossum brain. NADPH-diaphorase revealed reactivity in the neuropil of nearly all amygdaloid subdivisions with different intensities, allowing the identification of the medial and lateral subdivisions of the cortical posterior nucleus and the lateral subdivision of the lateral nucleus. The lateral, central, basolateral and basomedial nuclei exhibited acetylcholinesterase positivity, which provided a useful chemoarchitectural criterion for the identification of the anterior basolateral nucleus. Myelin stain allowed the identification of the medial subdivision of the lateral nucleus, and resulted in intense staining of the medial subdivisions of the central nucleus. The medial, posterior, and cortical nuclei, as well as the amygdalopiriform area did not exhibit positivity for myelin staining. On the basis of cyto- and chemoarchitectural criteria, the present study highlights that the opossum amygdaloid complex shares similarities with that of other species, thus supporting the idea that the organization of the amygdala is part of a basic plan conserved through mammalian evolution. (C) 2008 Elsevier Inc. All rights reserved.