906 resultados para Nano-patterned


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vector error-correction models (VECMs) have become increasingly important in their application to financial markets. Standard full-order VECM models assume non-zero entries in all their coefficient matrices. However, applications of VECM models to financial market data have revealed that zero entries are often a necessary part of efficient modelling. In such cases, the use of full-order VECM models may lead to incorrect inferences. Specifically, if indirect causality or Granger non-causality exists among the variables, the use of over-parameterised full-order VECM models may weaken the power of statistical inference. In this paper, it is argued that the zero–non-zero (ZNZ) patterned VECM is a more straightforward and effective means of testing for both indirect causality and Granger non-causality. For a ZNZ patterned VECM framework for time series of integrated order two, we provide a new algorithm to select cointegrating and loading vectors that can contain zero entries. Two case studies are used to demonstrate the usefulness of the algorithm in tests of purchasing power parity and a three-variable system involving the stock market.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The efficiency of sonication and microfluidization to produce nano-emulsions were evaluated in this study. The purpose was to produce an oil-in-water nano-emulsion of d-limonene to apply it in the next step for nano-particle encapsulation. In the entrapment and retention of volatiles or for the microencapsulation efficiency, emulsion size is one of the critical factors. In this study, a bench-top sonicator and an air-driven microfluidizer were used to prepare the emulsions. Results show that, while both methods were capable of producing nano-emulsions of the size range of 150-700 nm, the microfluidizer produced emulsions with narrower size distributions and sonication was more convenient in terms of operation and cleaning. In general, the size of the emulsions decreased with increasing sonication time, or the microfluidization pressure and duration. However, for both sonication and microfluidization, optimal conditions were necessary for emulsification beyond which the emulsion sizes would either increase or have little change with further processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein molecular motors, which are natural nano-machines that convert the chemical energy into mechanical work for cellular motion, muscle contraction and cell division, have been integrated in the last decade in primitive nanodevices based on the motility of nano-biological objects in micro- and nano-fabricated structures. However, the motility of microorganisms powered by molecular motors has not been similarly exploited. Moreover, among the proposed devices based on molecular motors, i.e., nanosensors, nano-mechanical devices and nano-imaging devices, biocomputation devices are conspicuously missing. The present contribution discusses, based on the present state of the art nano- and micro-fabrication, the comparative advantages and disadvantages of using nano- and micro-biological objects in future computation devices. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The viscoelastic behaviour of a range of polyurethane thermoplastic elastomer montmorillonite nanocomposites has been studied using a nanohardness tester. For softer Shore hardness 80A materials, the introduction of the organo-clay increased the creep strain obtained while the nano-indentor was held at constant load. The increase in creep strain was greatest for materials containing an organo-clay modified with a more hydrophilic quaternary alkylammonium surfactant and with higher loadings of the hydrophilic organo-clay. This suggested the effect might be due to a plasticising effect of the excess surfactant. For the harder Shore hardness 55D materials, the addition of the organo-clays produced only a small decrease in the creep strain, probably due to the interconnected hard domains in this material.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nano/micro grinding of tungsten carbide (WC) mould inserts was performed. A form accuracy of 〜200nm (in PV) and a surface roughness of 〜7nm were achieved. Nanoindentation revealed that small chipping or cracking occurred even at a penetration depth of 38nm, which could hinder the further improvement of surface quality during grinding. It was found that when grinding was conducted at nanometric scale, the microstructure of the work material and the morphology of the WC grains should be taken into account to enable a fully ductile removal. Copyright 2005 by the Japan Society of Mechanical Engineers

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The superior properties of ferritic/martensitic steels in a radiation environment (low swelling, low activation under irradiation and good corrosion resistance) make them good candidates for structural parts in future reactors and spallation sources. While it cannot substitute for true reactor experiments, irradiation by charged particles from accelerators can reduce the number of reactor experiments and support fundamental research for a better understanding of radiation effects in materials. Based on the nature of low energy accelerator experiments, only a small volume of material can be uniformly irradiated. Micro and nanoscale post irradiation tests thus have to be performed. We show here that nanoindentation and micro-compression testing on T91 and HT-9 stainless steel before and after ion irradiation are useful methods to evaluate the radiation induced hardening.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis has focused on three key areas of interest for femtosecond micromachining and inscription. The first area is micromachining where the work has focused on the ability to process highly repeatable, high precision machining with often extremely complex geometrical structures with little or no damage. High aspect ratio features have been demonstrated in transparent materials, metals and ceramics. Etch depth control was demonstrated especially in the work on phase mask fabrication. Practical chemical sensing and microfluidic devices were also fabricated to demonstrate the capability of the techniques developed during this work. The second area is femtosecond inscription. Here, the work has utilised the non-linear absorption mechanisms associated with femtosecond pulse-material interactions to create highly localised refractive index changes in transparent materials to create complex 3D structures. The techniques employed were then utilised in the fabrication of Phase masks and Optical Coherence Tomography (OCT) phantom calibration artefacts both of which show the potential to fill voids in the development of the fields. This especially the case for the OCT phantoms where there exists no previous artefacts of known shape, allowing for the initial specification of parameters associated with the quality of OCT machines that are being taken up across the world in industry and research. Finally the third area of focus was the combination of all of the techniques developed through work in planar samples to create a range of artefacts in optical fibres. The development of techniques and methods for compensating for the geometrical complexities associated with working with the cylindrical samples with varying refractive indices allowed for fundamental inscription parameters to be examined, structures for use as power monitors and polarisers with the optical fibres and finally the combination of femtosecond inscription and ablation techniques to create a magnetic field sensor with an optical fibre coated in Terfenol-D with directional capability. Through the development of understanding, practical techniques and equipment the work presented here demonstrates several novel pieces of research in the field of femtosecond micromachining and inscription that has provided a broad range of related fields with practical devices that were previously unavailable or that would take great cost and time to facilitate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Femtosecond-pulsed laser writing of waveguides, a few mm long, is demonstrated; waveguides were written orthogonally to the writing beam inside the bulk of ErIII-doped oxyfluoride glasses at a depth of 160 mum. The writing beam was 795 nm wavelength, 54 fs pulse duration and 11 MHz repetition rate. Tracks were written at pulse energies of 13.1 nJ to 26.1 nJ and sample translational velocity of 10 mmmiddot.s-1 to 28 mmmiddots-1. The influence of translational velocity and pulse energy on the cross-sectional shape and integrity of the written tracks is reported. Tracks tend to be narrower as the pulse energy is lowered or translational velocity decreased. Above 22.9 nJ, pulse energy, tracks tend to crack. The estimated refractive index profile of one track has a maximum increase of refractive index of 0.003 at the centre. These glasses normally form nano-glass-ceramics on heat treatment just above the glass transformation temperature (Tg). Here, a post-fs-writing heat-treatment just above Tg causes nano-ceramming of the glass sample and removes a light-guiding peripheral region of the fs-written tracks suggesting that this region may have been fs-modified by stress alone. Waveguiding at 651 nm and 973 nm wavelengths, and upconversion, are demonstrated in optimally written tracks.