877 resultados para Multi-objective evolutionary algorithm


Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is considerable interest in the use of genetic algorithms to solve problems arising in the areas of scheduling and timetabling. However, the classical genetic algorithm paradigm is not well equipped to handle the conflict between objectives and constraints that typically occurs in such problems. In order to overcome this, successful implementations frequently make use of problem specific knowledge. This paper is concerned with the development of a GA for a nurse rostering problem at a major UK hospital. The structure of the constraints is used as the basis for a co-evolutionary strategy using co-operating sub-populations. Problem specific knowledge is also used to define a system of incentives and disincentives, and a complementary mutation operator. Empirical results based on 52 weeks of live data show how these features are able to improve an unsuccessful canonical GA to the point where it is able to provide a practical solution to the problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this research is twofold: Firstly, to model and solve a complex nurse scheduling problem with an integer programming formulation and evolutionary algorithms. Secondly, to detail a novel statistical method of comparing and hence building better scheduling algorithms by identifying successful algorithm modifications. The comparison method captures the results of algorithms in a single figure that can then be compared using traditional statistical techniques. Thus, the proposed method of comparing algorithms is an objective procedure designed to assist in the process of improving an algorithm. This is achieved even when some results are non-numeric or missing due to infeasibility. The final algorithm outperforms all previous evolutionary algorithms, which relied on human expertise for modification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To understand the evolution of bipedalism among the homnoids in an ecological context we need to be able to estimate theenerrgetic cost of locomotion in fossil forms. Ideally such an estimate would be based entirely on morphology since, except for the rare instances where footprints are preserved, this is hte only primary source of evidence available. In this paper we use evolutionary robotics techniques (genetic algoritms, pattern generators and mechanical modeling) to produce a biomimentic simulation of bipedalism based on human body dimensions. The mechnaical simulation is a seven-segment, two-dimensional model with motive force provided by tension generators representing the major muscle groups acting around the lower-limb joints. Metabolic energy costs are calculated from the muscel model, and bipedal gait is generated using a finite-state pattern generator whose parameters are produced using a genetic algorithm with locomotor economy (maximum distance for a fixed energy cost) as the fitness criterion. The model is validated by comparing the values it generates with those for modern humans. The result (maximum efficiency of 200 J m-1) is within 15% of the experimentally derived value, which is very encouraging and suggests that this is a useful analytic technique for investigating the locomotor behaviour of fossil forms. Initial work suggests that in the future this technique could be used to estimate other locomotor parameters such as top speed. In addition, the animations produced by this technique are qualitatively very convincing, which suggests that this may also be a useful technique for visualizing bipedal locomotion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of the study is to identify the 3D behaviour of an adhesive in an assembly, and to take into account the effect of ageing in a marine environment. To that end, three different tests were employed. Gravimetric analyses were used to determine the water diffusion kinetics in the adhesive. Bulk tensile tests were performed to highlight the effects of humid ageing on the adhesive behaviour. Modified Arcan tests were performed for several ageing times to obtain the experimental database which was necessary to identify constitutive models. A Mahnken-Schlimmer type model was determined for the unaged state according to a procedure developed in a previous study. This identification used inverse techniques. It was based on the unaged modified Arcan results and on a coupling between an optimisation routine and finite-element analysis. Then, a global inverse identification procedure was developed. Its aim was to relate the unaged parameters to the moisture concentration and overcome the difficulties usually associated with ageing of bonded assemblies in a humid environment: a non-uniformity of the stress state and a gradient of mechanical properties in the adhesive. This procedure was similar to the one used in the first part but needed modified Arcan results for several ageing times. It also required an initial assumption for the evolution of the Mahnken-Schlimmer parameters with the moisture concentration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a new type of genetic algorithm for the set covering problem. It differs from previous evolutionary approaches first because it is an indirect algorithm, i.e. the actual solutions are found by an external decoder function. The genetic algorithm itself provides this decoder with permutations of the solution variables and other parameters. Second, it will be shown that results can be further improved by adding another indirect optimisation layer. The decoder will not directly seek out low cost solutions but instead aims for good exploitable solutions. These are then post optimised by another hill-climbing algorithm. Although seemingly more complicated, we will show that this three-stage approach has advantages in terms of solution quality, speed and adaptability to new types of problems over more direct approaches. Extensive computational results are presented and compared to the latest evolutionary and other heuristic approaches to the same data instances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Artificial immune systems have previously been applied to the problem of intrusion detection. The aim of this research is to develop an intrusion detection system based on the function of Dendritic Cells (DCs). DCs are antigen presenting cells and key to the activation of the human immune system, behaviour which has been abstracted to form the Dendritic Cell Algorithm (DCA). In algorithmic terms, individual DCs perform multi-sensor data fusion, asynchronously correlating the fused data signals with a secondary data stream. Aggregate output of a population of cells is analysed and forms the basis of an anomaly detection system. In this paper the DCA is applied to the detection of outgoing port scans using TCP SYN packets. Results show that detection can be achieved with the DCA, yet some false positives can be encountered when simultaneously scanning and using other network services. Suggestions are made for using adaptive signals to alleviate this uncovered problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Artificial immune systems, more specifically the negative selection algorithm, have previously been applied to intrusion detection. The aim of this research is to develop an intrusion detection system based on a novel concept in immunology, the Danger Theory. Dendritic Cells (DCs) are antigen presenting cells and key to the activation of the human immune system. DCs perform the vital role of combining signals from the host tissue and correlate these signals with proteins known as antigens. In algorithmic terms, individual DCs perform multi-sensor data fusion based on time-windows. The whole population of DCs asynchronously correlates the fused signals with a secondary data stream. The behaviour of human DCs is abstracted to form the DC Algorithm (DCA), which is implemented using an immune inspired framework, libtissue. This system is used to detect context switching for a basic machine learning dataset and to detect outgoing portscans in real-time. Experimental results show a significant difference between an outgoing portscan and normal traffic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this research is twofold: Firstly, to model and solve a complex nurse scheduling problem with an integer programming formulation and evolutionary algorithms. Secondly, to detail a novel statistical method of comparing and hence building better scheduling algorithms by identifying successful algorithm modifications. The comparison method captures the results of algorithms in a single figure that can then be compared using traditional statistical techniques. Thus, the proposed method of comparing algorithms is an objective procedure designed to assist in the process of improving an algorithm. This is achieved even when some results are non-numeric or missing due to infeasibility. The final algorithm outperforms all previous evolutionary algorithms, which relied on human expertise for modification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is considerable interest in the use of genetic algorithms to solve problems arising in the areas of scheduling and timetabling. However, the classical genetic algorithm paradigm is not well equipped to handle the conflict between objectives and constraints that typically occurs in such problems. In order to overcome this, successful implementations frequently make use of problem specific knowledge. This paper is concerned with the development of a GA for a nurse rostering problem at a major UK hospital. The structure of the constraints is used as the basis for a co-evolutionary strategy using co-operating sub-populations. Problem specific knowledge is also used to define a system of incentives and disincentives, and a complementary mutation operator. Empirical results based on 52 weeks of live data show how these features are able to improve an unsuccessful canonical GA to the point where it is able to provide a practical solution to the problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract- A Bayesian optimization algorithm for the nurse scheduling problem is presented, which involves choosing a suitable scheduling rule from a set for each nurse's assignment. Unlike our previous work that used GAs to implement implicit learning, the learning in the proposed algorithm is explicit, i.e. eventually, we will be able to identify and mix building blocks directly. The Bayesian optimization algorithm is applied to implement such explicit learning by building a Bayesian network of the joint distribution of solutions. The conditional probability of each variable in the network is computed according to an initial set of promising solutions. Subsequently, each new instance for each variable is generated by using the corresponding conditional probabilities, until all variables have been generated, i.e. in our case, a new rule string has been obtained. Another set of rule strings will be generated in this way, some of which will replace previous strings based on fitness selection. If stopping conditions are not met, the conditional probabilities for all nodes in the Bayesian network are updated again using the current set of promising rule strings. Computational results from 52 real data instances demonstrate the success of this approach. It is also suggested that the learning mechanism in the proposed approach might be suitable for other scheduling problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this research is twofold: Firstly, to model and solve a complex nurse scheduling problem with an integer programming formulation and evolutionary algorithms. Secondly, to detail a novel statistical method of comparing and hence building better scheduling algorithms by identifying successful algorithm modifications. The comparison method captures the results of algorithms in a single figure that can then be compared using traditional statistical techniques. Thus, the proposed method of comparing algorithms is an objective procedure designed to assist in the process of improving an algorithm. This is achieved even when some results are non-numeric or missing due to infeasibility. The final algorithm outperforms all previous evolutionary algorithms, which relied on human expertise for modification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a new type of genetic algorithm for the set covering problem. It differs from previous evolutionary approaches first because it is an indirect algorithm, i.e. the actual solutions are found by an external decoder function. The genetic algorithm itself provides this decoder with permutations of the solution variables and other parameters. Second, it will be shown that results can be further improved by adding another indirect optimisation layer. The decoder will not directly seek out low cost solutions but instead aims for good exploitable solutions. These are then post optimised by another hill-climbing algorithm. Although seemingly more complicated, we will show that this three-stage approach has advantages in terms of solution quality, speed and adaptability to new types of problems over more direct approaches. Extensive computational results are presented and compared to the latest evolutionary and other heuristic approaches to the same data instances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is considerable interest in the use of genetic algorithms to solve problems arising in the areas of scheduling and timetabling. However, the classical genetic algorithm paradigm is not well equipped to handle the conflict between objectives and constraints that typically occurs in such problems. In order to overcome this, successful implementations frequently make use of problem specific knowledge. This paper is concerned with the development of a GA for a nurse rostering problem at a major UK hospital. The structure of the constraints is used as the basis for a co-evolutionary strategy using co-operating sub-populations. Problem specific knowledge is also used to define a system of incentives and disincentives, and a complementary mutation operator. Empirical results based on 52 weeks of live data show how these features are able to improve an unsuccessful canonical GA to the point where it is able to provide a practical solution to the problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Le but de cette thèse est d’explorer le potentiel sismique des étoiles naines blanches pulsantes, et en particulier celles à atmosphères riches en hydrogène, les étoiles ZZ Ceti. La technique d’astérosismologie exploite l’information contenue dans les modes normaux de vibration qui peuvent être excités lors de phases particulières de l’évolution d’une étoile. Ces modes modulent le flux émergent de l’étoile pulsante et se manifestent principalement en termes de variations lumineuses multi-périodiques. L’astérosismologie consiste donc à examiner la luminosité d’étoiles pulsantes en fonction du temps, afin d’en extraire les périodes, les amplitudes apparentes, ainsi que les phases relatives des modes de pulsation détectés, en utilisant des méthodes standards de traitement de signal, telles que des techniques de Fourier. L’étape suivante consiste à comparer les périodes de pulsation observées avec des périodes générées par un modèle stellaire en cherchant l’accord optimal avec un modèle physique reconstituant le plus fidèlement possible l’étoile pulsante. Afin d’assurer une recherche optimale dans l’espace des paramètres, il est nécessaire d’avoir de bons modèles physiques, un algorithme d’optimisation de comparaison de périodes efficace, et une puissance de calcul considérable. Les périodes des modes de pulsation de modèles stellaires de naines blanches peuvent être généralement calculées de manière précise et fiable sur la base de la théorie linéaire des pulsations stellaires dans sa version adiabatique. Afin de définir dans son ensemble un modèle statique de naine blanche propre à l’analyse astérosismologique, il est nécessaire de spécifier la gravité de surface, la température effective, ainsi que différents paramètres décrivant la disposition en couche de l’enveloppe. En utilisant parallèlement les informations obtenues de manière indépendante (température effective et gravité de surface) par la méthode spectroscopique, il devient possible de vérifier la validité de la solution obtenue et de restreindre de manière remarquable l’espace des paramètres. L’exercice astérosismologique, s’il est réussi, mène donc à la détermination précise des paramètres de la structure globale de l’étoile pulsante et fournit de l’information unique sur sa structure interne et l’état de sa phase évolutive. On présente dans cette thèse l’analyse complète réussie, de l’extraction des fréquences à la solution sismique, de quatre étoiles naines blanches pulsantes. Il a été possible de déterminer les paramètres structuraux de ces étoiles et de les comparer remarquablement à toutes les contraintes indépendantes disponibles dans la littérature, mais aussi d’inférer sur la dynamique interne et de reconstruire le profil de rotation interne. Dans un premier temps, on analyse le duo d’étoiles ZZ Ceti, GD 165 et Ross 548, afin de comprendre les différences entre leurs propriétés de pulsation, malgré le fait qu’elles soient des étoiles similaires en tout point, spectroscopiquement parlant. L’analyse sismique révèle des structures internes différentes, et dévoile la sensibilité de certains modes de pulsation à la composition interne du noyau de l’étoile. Afin de palier à cette sensibilité, nouvellement découverte, et de rivaliser avec les données de qualité exceptionnelle que nous fournissent les missions spatiales Kepler et Kepler2, on développe une nouvelle paramétrisation des profils chimiques dans le coeur, et on valide la robustesse de notre technique et de nos modèles par de nombreux tests. Avec en main la nouvelle paramétrisation du noyau, on décroche enfin le ”Saint Graal” de l’astérosismologie, en étant capable de reproduire pour la première fois les périodes observées à la précision des observations, dans le cas de l’étude sismique des étoiles KIC 08626021 et de GD 1212.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

De nombreux problèmes liés aux domaines du transport, des télécommunications et de la logistique peuvent être modélisés comme des problèmes de conception de réseaux. Le problème classique consiste à transporter un flot (données, personnes, produits, etc.) sur un réseau sous un certain nombre de contraintes dans le but de satisfaire la demande, tout en minimisant les coûts. Dans ce mémoire, on se propose d'étudier le problème de conception de réseaux avec coûts fixes, capacités et un seul produit, qu'on transforme en un problème équivalent à plusieurs produits de façon à améliorer la valeur de la borne inférieure provenant de la relaxation continue du modèle. La méthode que nous présentons pour la résolution de ce problème est une méthode exacte de branch-and-price-and-cut avec une condition d'arrêt, dans laquelle nous exploitons à la fois la méthode de génération de colonnes, la méthode de génération de coupes et l'algorithme de branch-and-bound. Ces méthodes figurent parmi les techniques les plus utilisées en programmation linéaire en nombres entiers. Nous testons notre méthode sur deux groupes d'instances de tailles différentes (gran-des et très grandes), et nous la comparons avec les résultats donnés par CPLEX, un des meilleurs logiciels permettant de résoudre des problèmes d'optimisation mathématique, ainsi qu’avec une méthode de branch-and-cut. Il s'est avéré que notre méthode est prometteuse et peut donner de bons résultats, en particulier pour les instances de très grandes tailles.