992 resultados para Monte Carlo -simulointi
Resumo:
Compartmental and physiologically based toxicokinetic modeling coupled with Monte Carlo simulation were used to quantify the impact of biological variability (physiological, biochemical, and anatomic parameters) on the values of a series of bio-indicators of metal and organic industrial chemical exposures. A variability extent index and the main parameters affecting biological indicators were identified. Results show a large diversity in interindividual variability for the different categories of biological indicators examined. Measurement of the unchanged substance in blood, alveolar air, or urine is much less variable than the measurement of metabolites, both in blood and urine. In most cases, the alveolar flow and cardiac output were identified as the prime parameters determining biological variability, thus suggesting the importance of workload intensity on absorbed dose for inhaled chemicals.
Resumo:
This paper examines statistical analysis of social reciprocity, that is, the balance between addressing and receiving behaviour in social interactions. Specifically, it focuses on the measurement of social reciprocity by means of directionality and skew-symmetry statistics at different levels. Two statistics have been used as overall measures of social reciprocity at group level: the directional consistency and the skew-symmetry statistics. Furthermore, the skew-symmetry statistic allows social researchers to obtain complementary information at dyadic and individual levels. However, having computed these measures, social researchers may be interested in testing statistical hypotheses regarding social reciprocity. For this reason, it has been developed a statistical procedure, based on Monte Carlo sampling, in order to allow social researchers to describe groups and make statistical decisions.
Resumo:
The performance of magnetic nanoparticles is intimately entwined with their structure, mean size and magnetic anisotropy. Besides, ensembles offer a unique way of engineering the magnetic response by modifying the strength of the dipolar interactions between particles. Here we report on an experimental and theoretical analysis of magnetic hyperthermia, a rapidly developing technique in medical research and oncology. Experimentally, we demonstrate that single-domain cubic iron oxide particles resembling bacterial magnetosomes have superior magnetic heating efficiency compared to spherical particles of similar sizes. Monte Carlo simulations at the atomic level corroborate the larger anisotropy of the cubic particles in comparison with the spherical ones, thus evidencing the beneficial role of surface anisotropy in the improved heating power. Moreover we establish a quantitative link between the particle assembling, the interactions and the heating properties. This knowledge opens new perspectives for improved hyperthermia, an alternative to conventional cancer therapies.
Resumo:
O objetivo deste trabalho foi descrever um procedimento de modelagem de fertilidade do solo que integra propriedades químicas do solo utilizando-se do método de Monte Carlo. A espacialização das propriedades químicas foi obtida por procedimento geoestatístico de simulação estocástica, com modelagem das incertezas associadas às estimativas. As incertezas das propriedades químicas foram propagadas para o modelo de fertilidade resultante, possibilitando a geração de mapas de fertilidade condicionados a níveis de risco prédefinidos. O método aqui apresentado é ilustrado por um estudo de caso de fertilidade para cultura de soja, no Estado de Santa Catarina, considerando as seguintes propriedades químicas do solo: alumínio trocável, potássio e capacidade de troca catiônica.
Resumo:
O objetivo deste trabalho foi simular a produtividade potencial da cultura de milho, pelo método de Monte Carlo, utilizando um modelo agrometeorológico estocástico. O experimento foi conduzido em Piracicaba, SP, a 22º42'30''S, 47º38'30''W, e altitude de 546 m, o clima da região é do tipo Cwa (tropical úmido). Foram utilizados os valores médios diários de temperatura (de 1917 a 2002) e radiação solar global (de 1978 a 2002). Para comparar os dados reais com os simulados, foram utilizados índices de desempenho estatístico. Observou-se que os modelos probabilísticos, desenvolvidos para a simulação de dados médios diários de temperatura e de radiação solar global, geraram valores semelhantes aos observados por meio da distribuição triangular, a qual pode ser utilizada em modelo estocástico, para previsão da produtividade potencial de milho, nas diferentes épocas de semeadura.
Resumo:
Despite the considerable evidence showing that dispersal between habitat patches is often asymmetric, most of the metapopulation models assume symmetric dispersal. In this paper, we develop a Monte Carlo simulation model to quantify the effect of asymmetric dispersal on metapopulation persistence. Our results suggest that metapopulation extinctions are more likely when dispersal is asymmetric. Metapopulation viability in systems with symmetric dispersal mirrors results from a mean field approximation, where the system persists if the expected per patch colonization probability exceeds the expected per patch local extinction rate. For asymmetric cases, the mean field approximation underestimates the number of patches necessary for maintaining population persistence. If we use a model assuming symmetric dispersal when dispersal is actually asymmetric, the estimation of metapopulation persistence is wrong in more than 50% of the cases. Metapopulation viability depends on patch connectivity in symmetric systems, whereas in the asymmetric case the number of patches is more important. These results have important implications for managing spatially structured populations, when asymmetric dispersal may occur. Future metapopulation models should account for asymmetric dispersal, while empirical work is needed to quantify the patterns and the consequences of asymmetric dispersal in natural metapopulations.
Resumo:
This paper develops an approach to rank testing that nests all existing rank tests andsimplifies their asymptotics. The approach is based on the fact that implicit in every ranktest there are estimators of the null spaces of the matrix in question. The approach yieldsmany new insights about the behavior of rank testing statistics under the null as well as localand global alternatives in both the standard and the cointegration setting. The approach alsosuggests many new rank tests based on alternative estimates of the null spaces as well as thenew fixed-b theory. A brief Monte Carlo study illustrates the results.
Resumo:
Quantifying the spatial configuration of hydraulic conductivity (K) in heterogeneous geological environments is essential for accurate predictions of contaminant transport, but is difficult because of the inherent limitations in resolution and coverage associated with traditional hydrological measurements. To address this issue, we consider crosshole and surface-based electrical resistivity geophysical measurements, collected in time during a saline tracer experiment. We use a Bayesian Markov-chain-Monte-Carlo (McMC) methodology to jointly invert the dynamic resistivity data, together with borehole tracer concentration data, to generate multiple posterior realizations of K that are consistent with all available information. We do this within a coupled inversion framework, whereby the geophysical and hydrological forward models are linked through an uncertain relationship between electrical resistivity and concentration. To minimize computational expense, a facies-based subsurface parameterization is developed. The Bayesian-McMC methodology allows us to explore the potential benefits of including the geophysical data into the inverse problem by examining their effect on our ability to identify fast flowpaths in the subsurface, and their impact on hydrological prediction uncertainty. Using a complex, geostatistically generated, two-dimensional numerical example representative of a fluvial environment, we demonstrate that flow model calibration is improved and prediction error is decreased when the electrical resistivity data are included. The worth of the geophysical data is found to be greatest for long spatial correlation lengths of subsurface heterogeneity with respect to wellbore separation, where flow and transport are largely controlled by highly connected flowpaths.
Resumo:
We present molecular dynamics (MD) simulations results for dense fluids of ultrasoft, fully penetrable particles. These are a binary mixture and a polydisperse system of particles interacting via the generalized exponential model, which is known to yield cluster crystal phases for the corresponding monodisperse systems. Because of the dispersity in the particle size, the systems investigated in this work do not crystallize and form disordered cluster phases. The clusteringtransition appears as a smooth crossover to a regime in which particles are mostly located in clusters, isolated particles being infrequent. The analysis of the internal cluster structure reveals microsegregation of the big and small particles, with a strong homo-coordination in the binary mixture. Upon further lowering the temperature below the clusteringtransition, the motion of the clusters" centers-of-mass slows down dramatically, giving way to a cluster glass transition. In the cluster glass, the diffusivities remain finite and display an activated temperature dependence, indicating that relaxation in the cluster glass occurs via particle hopping in a nearly arrested matrix of clusters. Finally we discuss the influence of the microscopic dynamics on the transport properties by comparing the MD results with Monte Carlo simulations.
Resumo:
O objetivo deste trabalho foi avaliar a eficiência, na construção de mapas genéticos, dos algoritmos seriação e delineação rápida em cadeia, além dos critérios para avaliação de ordens: produto mínimo das frações de recombinação adjacentes, soma mínima das frações de recombinação adjacentes e soma máxima dos LOD Scores adjacentes, quando usados com o algoritmo de verificação de erros " ripple" . Foi simulado um mapa com 24 marcadores, posicionados aleatoriamente a distâncias variadas, com média 10 cM. Por meio do método Monte Carlo, foram obtidas 1.000 populações de retrocruzamento e 1.000 populações F2, com 200 indivíduos cada, e diferentes combinações de marcadores dominantes e co-dominantes (100% co-dominantes, 100% dominantes e mistura com 50% co-dominantes e 50% dominantes). Foi, também, simulada a perda de 25, 50 e 75% dos dados. Observou-se que os dois algoritmos avaliados tiveram desempenho semelhante e foram sensíveis à presença de dados perdidos e à presença de marcadores dominantes; esta última dificultou a obtenção de estimativas com boa acurácia, tanto da ordem quanto da distância. Além disso, observou-se que o algoritmo " ripple" geralmente aumenta o número de ordens corretas e pode ser combinado com os critérios soma mínima das frações de recombinação adjacentes e produto mínimo das frações de recombinação adjacentes.
Resumo:
RESUMEN: El objetivo de este trabajo es calcular el importe de la prima pura periódica que debe cobrar el reasegurador a la cedente en un reaseguro finite risk en ambiente financiero estocástico. El problema de la convolución de las diferentes variables aleatorias que intervienen en el cálculo de la prima lo hemos solucionado simulando, por Monte-Carlo, trayectorias de siniestralidad para el reasegurador aplicando posteriormente, en cada trayectoria simulada, los criterios de decisión financieros, esperanza, varianza y desviación. En los criterios de la varianza y de la desviación proponemos utilizar una ecuación de recurrencia estocástica para evitar el problema de la dependencia que existe entre los factores de capitalización estocásticos, obteniendo la prima de reaseguro en función del nivel de aversión al riesgo del reasegurador y de la volatilidad del tipo de interés. Palabras clave: Finite risk, ambiente estocástico, ecuación de recurrencia, simulación de Monte-Carlo, prima pura periódica.
Resumo:
We have included the effective description of squark interactions with charginos/neutralinos in the MadGraph MSSM model. This effective description includes the effective Yukawa couplings, and another logarithmic term which encodes the supersymmetry-breaking. We have performed an extensive test of our implementation analyzing the results of the partial decay widths of squarks into charginos and neutralinos obtained by using FeynArts/FormCalc programs and the new model file in MadGraph. We present results for the cross-section of top-squark production decaying into charginos and neutralinos.
Resumo:
Lui recommande Monsieur Chotteau : "J'estime grandement cet homme si parfaitement méritant ; c'est un lettré digne de votre protection et j'ai pour lui une amitié reconnaissante et fidèle" (9 janvier 1903). Espère recevoir chez lui ses droits échus (7 avril). Évoque sa collaboration avec Paul Ginisty, relate son travail sur "Ariane" dont le poème de Catulle Mendès est "admirable de passion, de pittoresque et de sentiments humains." (9 octobre 1904). L'informe que dans quelques jours vont commencer les répétitions générales de "Chérubin" à Monte Carlo (25 janvier 1905). Regrette enfin d'avoir raté sa visite du Nouvel An : "j'avais juré que je serai le premier à vous voir." (2 janvier 1906)
Resumo:
We report on the study of nonequilibrium ordering in the reaction-diffusion lattice gas. It is a kinetic model that relaxes towards steady states under the simultaneous competition of a thermally activated creation-annihilation $(reaction$) process at temperature T, and a diffusion process driven by a heat bath at temperature T?T. The phase diagram as one varies T and T, the system dimension d, the relative priori probabilities for the two processes, and their dynamical rates is investigated. We compare mean-field theory, new Monte Carlo data, and known exact results for some limiting cases. In particular, no evidence of Landau critical behavior is found numerically when d=2 for Metropolis rates but Onsager critical points and a variety of first-order phase transitions.
Resumo:
In this letter, we obtain the Maximum LikelihoodEstimator of position in the framework of Global NavigationSatellite Systems. This theoretical result is the basis of a completelydifferent approach to the positioning problem, in contrastto the conventional two-steps position estimation, consistingof estimating the synchronization parameters of the in-viewsatellites and then performing a position estimation with thatinformation. To the authors’ knowledge, this is a novel approachwhich copes with signal fading and it mitigates multipath andjamming interferences. Besides, the concept of Position–basedSynchronization is introduced, which states that synchronizationparameters can be recovered from a user position estimation. Weprovide computer simulation results showing the robustness ofthe proposed approach in fading multipath channels. The RootMean Square Error performance of the proposed algorithm iscompared to those achieved with state-of-the-art synchronizationtechniques. A Sequential Monte–Carlo based method is used todeal with the multivariate optimization problem resulting fromthe ML solution in an iterative way.