980 resultados para Modified Bessel Function


Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: A single bolus dose of etomidate decreases cortisol synthesis by inhibiting the 11-beta hydroxylase, a mitochondrial enzyme in the final step of cortisol synthesis. In our institution, all the patients undergoing cardiac surgery receive etomidate at anesthesia induction. The purpose of this study was to assess the incidence of adrenocortical dysfunction after a single dose of etomidate in selected patients undergoing major cardiac surgery and requiring high-dose norepinephrine postoperatively. STUDY DESIGN: Retrospective descriptive study in the surgical ICU of a university hospital. PATIENTS AND METHODS: Sixty-three patients presented acute circulatory failure requiring norepinephrine (>0,2 microg/kg/min) during the 48 hours following cardiac surgery. Absolute adrenal insufficiency was defined as a basal cortisol below 414 nmo/l (15 microg/dl) and relative adrenal insufficiency as a basal plasma cortisol between 414 nmo/l (15 microg/dl) and 938 nmo/l (34 microg/dl) with an incremental response after 250 microg of synthetic corticotropin (measured at 60 minutes) below 250 nmol/l (9 microg/dl). RESULTS: Fourteen patients (22%) had normal corticotropin test results, 10 (16%) had absolute and 39 (62%) relative adrenal insufficiency. All patients received a low-dose steroid substitution after the corticotropin test. Substituted patients had similar clinical outcomes compared to patients with normal adrenal function. CONCLUSION: A high incidence of relative adrenal failure was observed in selected cardiac surgery patients with acute postoperative circulatory failure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several pieces of evidence suggest that sleep deprivation causes marked alterations in neurotransmitter receptor function in diverse neuronal cell types. To date, this has been studied mainly in wake- and sleep-promoting areas of the brain and in the hippocampus, which is implicated in learning and memory. This article reviews findings linking sleep deprivation to modifications in neurotransmitter receptor function, including changes in receptor subunit expression, ligand affinity and signal transduction mechanisms. We focus on studies using sleep deprivation procedures that control for side-effects such as stress. We classify the changes with respect to their functional consequences on the activity of wake-promoting and/or sleep-promoting systems. We suggest that elucidation of how sleep deprivation affects neurotransmitter receptor function will provide functional insight into the detrimental effects of sleep loss.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Half of the patients with end-stage heart failure suffer from persistent atrial fibrillation (AF). Atrial kick (AK) accounts for 10-15% of the ejection fraction. A device restoring AK should significantly improve cardiac output (CO) and possibly delay ventricular assist device (VAD) implantation. This study has been designed to assess the mechanical effects of a motorless pump on the right chambers of the heart in an animal model. METHODS: Atripump is a dome-shaped biometal actuator electrically driven by a pacemaker-like control unit. In eight sheep, the device was sutured onto the right atrium (RA). AF was simulated with rapid atrial pacing. RA ejection fraction (EF) was assessed with intracardiac ultrasound (ICUS) in baseline, AF and assisted-AF status. In two animals, the pump was left in place for 4 weeks and then explanted. Histology examination was carried out. The mean values for single measurement per animal with +/-SD were analysed. RESULTS: The contraction rate of the device was 60 per min. RA EF was 41% in baseline, 7% in AF and 21% in assisted-AF conditions. CO was 7+/-0.5 l min(-1) in baseline, 6.2+/-0.5 l min(-1) in AF and 6.7+/-0.5 l min(-1) in assisted-AF status (p<0.01). Histology of the atrium in the chronic group showed chronic tissue inflammation and no sign of tissue necrosis. CONCLUSIONS: The artificial muscle restores the AK and improves CO. In patients with end-stage cardiac failure and permanent AF, if implanted on both sides, it would improve CO and possibly delay or even avoid complex surgical treatment such as VAD implantation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent data indicate that bradykinin participates in the regulation of neonatal glomerular function and also acts as a growth regulator during renal development. The aim of the present study was to investigate the involvement of bradykinin in the maturation of renal function. Bradykinin beta2-receptors of newborn rabbits were inhibited for 4 days by Hoe 140. The animals were treated with 300 microg/kg s.c. Hoe 140 (group Hoe, n = 8) or 0.9% NaCl (group control, n = 8) twice daily. Clearance studies were performed in anesthetized rabbits at the age of 8-9 days. Bradykinin receptor blockade did not impair kidney growth, as demonstrated by similar kidney weights in the two groups, nor did it influence blood pressure. Renal blood flow was higher, while renal vascular resistance and filtration fraction were lower in Hoe 140-treated rabbits. No difference in glomerular filtration rate was observed. The unexpectedly higher renal perfusion observed in group Hoe cannot be explained by the blockade of the known vasodilator and trophic effect of bradykinin. Our results indicate that in intact kallikrein-kinin system is necessary for the normal functional development of the kidney.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SUMMARYIntercellular communication is achieved at specialized regions of the plasma membrane by gap junctions. The proteins constituting the gap junctions are called connexins and are encoded by a family of genes highly conserved during evolution. In adult mouse, four connexins (Cxs) are known to be expressed in the vasculature: Cx37, Cx40, Cx43 and Cx45. Several recent studies have provided evidences that vascular connexins expression and blood pressure regulation are closely linked, suggesting a role for connexins in the control of blood pressure. However, the precise function that each vascular connexin plays under physiological and pathophysiological conditions is still not elucidated. In this context, this work was dedicated to evaluate the contribution of each of the four vascular connexins in the control of the vascular function and in the blood pressure regulation.In the present work, we first demonstrated that vascular connexins are differently regulated by hypertension in the mouse aorta. We also observed that endothelial connexins play a regulatory role on eNOS expression levels and function in the aorta, therefore in the control of vascular tone. Then, we demonstrated that Cx40 plays a pivotal role in the kidney by regulating the renal levels of COX-2 and nNOS, two key enzymes of the macula densa known to participate in the control of renin secreting cells. We also found that Cx43 forms the functional gap junction involved in intercellular Ca2+ wave propagation between vascular smooth muscle cells. Finally, we have started to generate transgenic mice expressing specifically Cx40 in the endothelium to investigate the involvement of Cx40 in the vasomotor tone, or in the renin secreting cells to evaluate the role of Cx40 in the control of renin secretion.In conclusion, this work has allowed us to identify new roles for connexins in the vasculature. Our results suggest that vascular connexins could be interesting targets for new therapies caring hypertension and vascular diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vegeu el resum a l'inici del document del fitxer adjunt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The group I metabotropic glutamate receptor 5 (mGluR5) has been implicated in the development of cortical sensory maps. However, its precise roles in the synaptic function and plasticity of thalamocortical (TC) connections remain unknown. Here we first show that in mGluR5 knockout (KO) mice bred onto a C57BL6 background cytoarchitectonic differentiation into barrels is missing, but the representations for large whiskers are identifiable as clusters of TC afferents. The altered dendritic morphology of cortical layer IV spiny stellate neurons in mGluR5 KO mice implicates a role for mGluR5 in the dendritic morphogenesis of excitatory neurons. Next, in vivo single-unit recordings of whisker-evoked activity in mGluR5 KO adults demonstrated a preserved topographical organization of the whisker representation, but a significantly diminished temporal discrimination of center to surround whiskers in the responses of individual neurons. To evaluate synaptic function at TC synapses in mGluR5 KO mice, whole-cell voltage-clamp recording was conducted in acute TC brain slices prepared from postnatal day 4-11 mice. At mGluR5 KO TC synapses, N-methyl-D-aspartate (NMDA) currents decayed faster and synaptic strength was more easily reduced, but more difficult to strengthen by Hebbian-type pairing protocols, despite a normal developmental increase in alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated currents and presynaptic function. We have therefore demonstrated that mGluR5 is required for synaptic function/plasticity at TC synapses as barrels are forming, and we propose that these functional alterations at the TC synapse are the basis of the abnormal anatomical and functional development of the somatosensory cortex in the mGluR5 KO mouse.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human cancer vaccines are often prepared with altered "analog" or "heteroclitic" antigens that have been optimized for HLA class I binding, resulting in enhanced immunogenicity. Here, we take advantage of CpG oligodeoxynucleotides as powerful vaccine adjuvants and demonstrate the induction of high T cell frequencies in melanoma patients, despite the use of natural (unmodified) tumor antigenic peptide. Compared with vaccination with analog peptide, natural peptide induced T cell frequencies that were approximately twofold lower. However, T cells showed superior tumor reactivity because of (i) increased functional avidity for natural antigen and (ii) enhancement of T cell activation and effector function. Thus, novel vaccine formulations comprising potent immune stimulators may allow to circumvent the need for modified antigens and can induce highly functional T cells with precise antigen specificity

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The glucose transporter isoform GLUT2 is expressed in liver, intestine, kidney and pancreatic islet beta cells, as well as in the central nervous system, in neurons, astrocytes and tanycytes. Physiological studies of genetically modified mice have revealed a role for GLUT2 in several regulatory mechanisms. In pancreatic beta cells, GLUT2 is required for glucose-stimulated insulin secretion. In hepatocytes, suppression of GLUT2 expression revealed the existence of an unsuspected glucose output pathway that may depend on a membrane traffic-dependent mechanism. GLUT2 expression is nevertheless required for the physiological control of glucose-sensitive genes, and its inactivation in the liver leads to impaired glucose-stimulated insulin secretion, revealing a liver-beta cell axis, which is likely to be dependent on bile acids controlling beta cell secretion capacity. In the nervous system, GLUT2-dependent glucose sensing controls feeding, thermoregulation and pancreatic islet cell mass and function, as well as sympathetic and parasympathetic activities. Electrophysiological and optogenetic techniques established that Glut2 (also known as Slc2a2)-expressing neurons of the nucleus tractus solitarius can be activated by hypoglycaemia to stimulate glucagon secretion. In humans, inactivating mutations in GLUT2 cause Fanconi-Bickel syndrome, which is characterised by hepatomegaly and kidney disease; defects in insulin secretion are rare in adult patients, but GLUT2 mutations cause transient neonatal diabetes. Genome-wide association studies have reported that GLUT2 variants increase the risks of fasting hyperglycaemia, transition to type 2 diabetes, hypercholesterolaemia and cardiovascular diseases. Individuals with a missense mutation in GLUT2 show preference for sugar-containing foods. We will discuss how studies in mice help interpret the role of GLUT2 in human physiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The risk/benefit profile of intravitreal melphalan injection for treatment of active vitreous seeds in retinoblastoma remains uncertain. We report clinical and electroretinography results after 6 months of one patient who has shown a favorable initial clinical response to intravitreal melphalan injections for treatment of refractory vitreous seeds. METHODS: Clinical case report. PATIENT: The patient presented at age 17 months with bilateral retinoblastoma [OD: International Classification (ICRB) group E, Reese-Ellsworth (R-E) class Vb; OS: ICRB D, R-E Vb] with no known prior family history. The right eye was enucleated primarily. The patient received systemic chemotherapy and extensive local treatment to the left eye. Ten months later, she presented with recurrent disease, including fine, diffuse vitreous seeds. Tumor control was established with intra-arterial chemotherapy and local treatment. Subsequent recurrence was treated with further intra-arterial chemotherapy, local treatment, and plaque radiotherapy with iodine-125. Persistent free-floating spherical vitreous seeds were treated with 4 cycles of intravitreal melphalan injection via the pars plana, with doses of 30, 30, 30, and 20 μg. RESULTS: After 6 months of follow-up, the left eye remained free of active tumor. Visual acuity was 20/40. Photopic ERGs amplitudes were unchanged compared with those recorded prior to the intravitreal injection treatments. CONCLUSIONS: Intravitreal melphalan injection for refractory spherical vitreous seeds of retinoblastoma with favorable tumor response is compatible with good central visual acuity and preservation of retinal function as indicated by photopic ERG recordings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phenoxyalkanoic acid degradation is well studied in Beta- and Gammaproteobacteria, but the genetic background has not been elucidated so far in Alphaproteobacteria. We report the isolation of several genes involved in dichlor- and mecoprop degradation from the alphaproteobacterium Sphingomonas herbicidovorans MH and propose that the degradation proceeds analogously to that previously reported for 2,4-dichlorophenoxyacetic acid (2,4-D). Two genes for alpha-ketoglutarate-dependent dioxygenases, sdpA(MH) and rdpA(MH), were found, both of which were adjacent to sequences with potential insertion elements. Furthermore, a gene for a dichlorophenol hydroxylase (tfdB), a putative regulatory gene (cadR), two genes for dichlorocatechol 1,2-dioxygenases (dccA(I/II)), two for dienelactone hydrolases (dccD(I/II)), part of a gene for maleylacetate reductase (dccE), and one gene for a potential phenoxyalkanoic acid permease were isolated. In contrast to other 2,4-D degraders, the sdp, rdp, and dcc genes were scattered over the genome and their expression was not tightly regulated. No coherent pattern was derived on the possible origin of the sdp, rdp, and dcc pathway genes. rdpA(MH) was 99% identical to rdpA(MC1), an (R)-dichlorprop/alpha-ketoglutarate dioxygenase from Delftia acidovorans MC1, which is evidence for a recent gene exchange between Alpha- and Betaproteobacteria. Conversely, DccA(I) and DccA(II) did not group within the known chlorocatechol 1,2-dioxygenases, but formed a separate branch in clustering analysis. This suggests a different reservoir and reduced transfer for the genes of the modified ortho-cleavage pathway in Alphaproteobacteria compared with the ones in Beta- and Gammaproteobacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Factor D is an essential enzyme for activation of complement by the alternative pathway (AP). It has been difficult to obtain mouse monoclonal antibodies (Mabs) which block the function of factor D. We have developed a strategy to obtain such Mabs using a double screening procedure of the initial clones. We selected the clone whose supernatant had the lowest level of anti-factor D Ab by ELISA and abolished factor D haemolytic activity. Addition of this Mab to human serum was shown to abolish conversion of C3 by cobra venom factor, haemolysis of rabbit erythrocytes, and activation of C3 and C5 by cuprophane dialysis membranes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to characterize the effect of a 5 km running time trial on the neuromuscular properties of the plantar flexors. Eleven well-trained triathletes performed a series of neuromuscular tests before and immediately after the run on a 200 m indoor track. Muscle activation (twitch interpolation) and normalized EMG activity were assessed during maximal voluntary contraction (MVC) of plantar flexors. Maximal soleus H-reflexes and M-waves were evoked at rest (i.e. H (MAX) and M (MAX), respectively) and during MVC (i.e. H (SUP) and M (SUP), respectively). MVC significantly declined (-27%; P < 0.001) after the run, due to decrease in muscle activation (-8%; P < 0.05) and M (MAX)-normalized EMG activity (-13%; P < 0.05). Significant reductions in M-wave amplitudes (M (MAX): -13% and M (SUP): -16%; P < 0.05) as well as H (MAX)/M (MAX) (-37%; P < 0.01) and H (SUP)/M (SUP) (-25%; P < 0.05) ratios occurred with fatigue. Following exercise, the single twitch was characterized by lower peak torque (-16%; P < 0.001) as well as shorter contraction (-19%; P < 0.001) and half-relaxation (-24%; P < 0.001) times. In conclusion, the reduction in plantar flexors strength induced by a 5 km running time trial is caused by peripheral adjustments, which are attributable to a failure of the neuromuscular transmission and excitation-contraction coupling. Fatigue also decreased the magnitude of efferent motor outflow from spinal motor neurons to the plantar flexors and part of this suboptimal neural drive is the result of an inhibition of soleus motoneuron pool reflex excitability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To compare autofluorescence (AF) images obtained with the confocal scanning laser ophthalmoscope (using the Heidelberg retina angiograph; HRA) and the modified Topcon fundus camera, in a routine clinical setting. A prospective comparative study conducted at the Jules-Gonin Eye Hospital. Fifty-six patients from the medical retina clinic. All patients had complete ophthalmic slit-lamp and fundus examinations, colour and red-free fundus photography, AF imaging with both instruments, and fluorescein angiography. Cataract and fixation were graded clinically. AF patterns were analyzed for healthy and pathological features. Differences of image noise were analyzed by cataract grading and fixation. A total of 105 eyes were included. AF patterns discovered by the retina angiograph and the fundus camera images, respectively, were a dark optic disc in 72 % versus 15 %, a dark fovea in 92 % versus 4 %, sub- and intraretinal fluid visible as hyperautofluorescence on HRA images only, lipid exudates visible as hypoautofluorescence on HRA images only. The same autofluorescent pattern was found on both images for geographic atrophy, retinal pigment changes, drusen and haemorrhage. Image noise was significantly associated with the degree of cataract and/or poor fixation, favouring the fundus camera. Images acquired by the fundus camera before and after fluorescein angiography were identical. Fundus AF images differ according to the technical differences of the instruments used. Knowledge of these differences is important not only for correctly interpreting images, but also for selecting the most appropriate instrument for the clinical situation.