870 resultados para Models of Computation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time-domain models of marine structures based on frequency domain data are usually built upon the Cummins equation. This type of model is a vector integro-differential equation which involves convolution terms. These convolution terms are not convenient for analysis and design of motion control systems. In addition, these models are not efficient with respect to simulation time, and ease of implementation in standard simulation packages. For these reasons, different methods have been proposed in the literature as approximate alternative representations of the convolutions. Because the convolution is a linear operation, different approaches can be followed to obtain an approximately equivalent linear system in the form of either transfer function or state-space models. This process involves the use of system identification, and several options are available depending on how the identification problem is posed. This raises the question whether one method is better than the others. This paper therefore has three objectives. The first objective is to revisit some of the methods for replacing the convolutions, which have been reported in different areas of analysis of marine systems: hydrodynamics, wave energy conversion, and motion control systems. The second objective is to compare the different methods in terms of complexity and performance. For this purpose, a model for the response in the vertical plane of a modern containership is considered. The third objective is to describe the implementation of the resulting model in the standard simulation environment Matlab/Simulink.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to its ability to represent intricate systems with material nonlinearities as well as irregular loading, boundary, geometrical and material domains, the finite element (FE) method has been recognized as an important computational tool in spinal biomechanics. Current FE models generally account for a single distinct spinal geometry with one set of material properties despite inherently large inter-subject variability. The uncertainty and high variability in tissue material properties, geometry, loading and boundary conditions has cast doubt on the reliability of their predictions and comparability with reported in vitro and in vivo values. A multicenter study was undertaken to compare the results of eight well-established models of the lumbar spine that have been developed, validated and applied for many years. Models were subjected to pure and combined loading modes and their predictions were compared to in vitro and in vivo measurements for intervertebral rotations, disc pressures and facet joint forces. Under pure moment loading, the predicted L1-5 rotations of almost all models fell within the reported in vitro ranges; their median values differed on average by only 2° for flexion-extension, 1° for lateral bending and 5° for axial rotation. Predicted median facet joint forces and disc pressures were also in good agreement with previously published median in vitro values. However, the ranges of predictions were larger and exceeded the in vitro ranges, especially for facet joint forces. For all combined loading modes, except for flexion, predicted median segmental intervertebral rotations and disc pressures were in good agreement with in vivo values. The simulations yielded median facet joint forces of 0 N in flexion, 38 N in extension, 14 N in lateral bending and 60 N in axial rotation that could not be validated due to the paucity of in vivo facet joint forces. In light of high inter-subject variability, one must be cautious when generalizing predictions obtained from one deterministic model. This study demonstrates however that the predictive power increases when FE models are combined together. The median of individual numerical results can hence be used as an improved tool in order to estimate the response of the lumbar spine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The conformational flexibility inherent in the polynucleotide chain plays an important role in deciding its three-dimensonal structure and enables it to undergo structural transitions in order to fulfil all its functions. Following certain stereochemical guidelines, both right and left handed double-helical models have been built in our laboratory and they are in reasonably good agreement with the fibre patterns for various polymorphous forms of DNA. Recently, nuclear magnetic resonance spectroscopy has become an important technique for studying the solution conformation and polymorphism of nucleic acids. Several workers have used 1H nuclear magnetic resonance nuclear Overhauser enhancement measurements to estimate the interproton distances for the various DNA oligomers and compared them with the interproton distances for particular models of A and Β form DNA. In some cases the solution conformation does not seem to fit either of these models. We have been studying various models for DNA with a view to exploring the full conformational space allowed for nucleic acid polymers. In this paper, the interproton distances calculated for the different stereochemically feasible models of DNA are presented and they are compared and correlated against those obtained from 1Η nuclear magnetic resonance nuclear Overhauser enhancement measurements of various nucleic acid oligomers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To remain competitive, many agricultural systems are now being run along business lines. Systems methodologies are being incorporated, and here evolutionary computation is a valuable tool for identifying more profitable or sustainable solutions. However, agricultural models typically pose some of the more challenging problems for optimisation. This chapter outlines these problems, and then presents a series of three case studies demonstrating how they can be overcome in practice. Firstly, increasingly complex models of Australian livestock enterprises show that evolutionary computation is the only viable optimisation method for these large and difficult problems. On-going research is taking a notably efficient and robust variant, differential evolution, out into real-world systems. Next, models of cropping systems in Australia demonstrate the challenge of dealing with competing objectives, namely maximising farm profit whilst minimising resource degradation. Pareto methods are used to illustrate this trade-off, and these results have proved to be most useful for farm managers in this industry. Finally, land-use planning in the Netherlands demonstrates the size and spatial complexity of real-world problems. Here, GIS-based optimisation techniques are integrated with Pareto methods, producing better solutions which were acceptable to the competing organizations. These three studies all show that evolutionary computation remains the only feasible method for the optimisation of large, complex agricultural problems. An extra benefit is that the resultant population of candidate solutions illustrates trade-offs, and this leads to more informed discussions and better education of the industry decision-makers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diffusive transport is a universal phenomenon, throughout both biological and physical sciences, and models of diffusion are routinely used to interrogate diffusion-driven processes. However, most models neglect to take into account the role of volume exclusion, which can significantly alter diffusive transport, particularly within biological systems where the diffusing particles might occupy a significant fraction of the available space. In this work we use a random walk approach to provide a means to reconcile models that incorporate crowding effects on different spatial scales. Our work demonstrates that coarse-grained models incorporating simplified descriptions of excluded volume can be used in many circumstances, but that care must be taken in pushing the coarse-graining process too far.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analytical solutions of partial differential equation (PDE) models describing reactive transport phenomena in saturated porous media are often used as screening tools to provide insight into contaminant fate and transport processes. While many practical modelling scenarios involve spatially variable coefficients, such as spatially variable flow velocity, v(x), or spatially variable decay rate, k(x), most analytical models deal with constant coefficients. Here we present a framework for constructing exact solutions of PDE models of reactive transport. Our approach is relevant for advection-dominant problems, and is based on a regular perturbation technique. We present a description of the solution technique for a range of one-dimensional scenarios involving constant and variable coefficients, and we show that the solutions compare well with numerical approximations. Our general approach applies to a range of initial conditions and various forms of v(x) and k(x). Instead of simply documenting specific solutions for particular cases, we present a symbolic worksheet, as supplementary material, which enables the solution to be evaluated for different choices of the initial condition, v(x) and k(x). We also discuss how the technique generalizes to apply to models of coupled multispecies reactive transport as well as higher dimensional problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis consists of an introduction, four research articles and an appendix. The thesis studies relations between two different approaches to continuum limit of models of two dimensional statistical mechanics at criticality. The approach of conformal field theory (CFT) could be thought of as the algebraic classification of some basic objects in these models. It has been succesfully used by physicists since 1980's. The other approach, Schramm-Loewner evolutions (SLEs), is a recently introduced set of mathematical methods to study random curves or interfaces occurring in the continuum limit of the models. The first and second included articles argue on basis of statistical mechanics what would be a plausible relation between SLEs and conformal field theory. The first article studies multiple SLEs, several random curves simultaneously in a domain. The proposed definition is compatible with a natural commutation requirement suggested by Dubédat. The curves of multiple SLE may form different topological configurations, ``pure geometries''. We conjecture a relation between the topological configurations and CFT concepts of conformal blocks and operator product expansions. Example applications of multiple SLEs include crossing probabilities for percolation and Ising model. The second article studies SLE variants that represent models with boundary conditions implemented by primary fields. The most well known of these, SLE(kappa, rho), is shown to be simple in terms of the Coulomb gas formalism of CFT. In the third article the space of local martingales for variants of SLE is shown to carry a representation of Virasoro algebra. Finding this structure is guided by the relation of SLEs and CFTs in general, but the result is established in a straightforward fashion. This article, too, emphasizes multiple SLEs and proposes a possible way of treating pure geometries in terms of Coulomb gas. The fourth article states results of applications of the Virasoro structure to the open questions of SLE reversibility and duality. Proofs of the stated results are provided in the appendix. The objective is an indirect computation of certain polynomial expected values. Provided that these expected values exist, in generic cases they are shown to possess the desired properties, thus giving support for both reversibility and duality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In cardiac myocytes (heart muscle cells), coupling of electric signal known as the action potential to contraction of the heart depends crucially on calcium-induced calcium release (CICR) in a microdomain known as the dyad. During CICR, the peak number of free calcium ions (Ca) present in the dyad is small, typically estimated to be within range 1-100. Since the free Ca ions mediate CICR, noise in Ca signaling due to the small number of free calcium ions influences Excitation-Contraction (EC) coupling gain. Noise in Ca signaling is only one noise type influencing cardiac myocytes, e.g., ion channels playing a central role in action potential propagation are stochastic machines, each of which gates more or less randomly, which produces gating noise present in membrane currents. How various noise sources influence macroscopic properties of a myocyte, how noise is attenuated and taken advantage of are largely open questions. In this thesis, the impact of noise on CICR, EC coupling and, more generally, macroscopic properties of a cardiac myocyte is investigated at multiple levels of detail using mathematical models. Complementarily to the investigation of the impact of noise on CICR, computationally-efficient yet spatially-detailed models of CICR are developed. The results of this thesis show that (1) gating noise due to the high-activity mode of L-type calcium channels playing a major role in CICR may induce early after-depolarizations associated with polymorphic tachycardia, which is a frequent precursor to sudden cardiac death in heart failure patients; (2) an increased level of voltage noise typically increases action potential duration and it skews distribution of action potential durations toward long durations in cardiac myocytes; and that (3) while a small number of Ca ions mediate CICR, Excitation-Contraction coupling is robust against this noise source, partly due to the shape of ryanodine receptor protein structures present in the cardiac dyad.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a very recent study [1] the Renormalisation Group (RNG) turbulence model was used to obtain flow predictions in a strongly swirling quarl burner, and was found to perform well in predicting certain features that are not well captured using less sophisticated models of turbulence. The implication is that the RNG approach should provide an economical and reliable tool for the prediction of swirling flows in combustor and furnace geometries commonly encountered in technological applications. To test this hypothesis the present work considers flow in a model furnace for which experimental data is available [2]. The essential features of the flow which differentiate it from the previous study [1] are that the annular air jet entry is relatively narrow and the base wall of the cylindrical furnace is at 90 degrees to the inlet pipe. For swirl numbers of order 1 the resulting flow is highly complex with significant inner and outer recirculation regions. The RNG and standard k-epsilon models are used to model the flow for both swirling and non-swirling entry jets and the results compared with experimental data [2]. Near wall viscous effects are accounted for in both models via the standard wall function formulation [3]. For the RNG model, additional computations with grid placement extending well inside the near wall viscous-affected sublayer are performed in order to assess the low Reynolds number capabilities of the model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stochastic volatility models are of fundamental importance to the pricing of derivatives. One of the most commonly used models of stochastic volatility is the Heston Model in which the price and volatility of an asset evolve as a pair of coupled stochastic differential equations. The computation of asset prices and volatilities involves the simulation of many sample trajectories with conditioning. The problem is treated using the method of particle filtering. While the simulation of a shower of particles is computationally expensive, each particle behaves independently making such simulations ideal for massively parallel heterogeneous computing platforms. In this paper, we present our portable Opencl implementation of the Heston model and discuss its performance and efficiency characteristics on a range of architectures including Intel cpus, Nvidia gpus, and Intel Many-Integrated-Core (mic) accelerators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The NUVIEW software package allows skeletal models of any double helical nucleic acid molecule to be displayed out a graphics monitor and to apply various rotations, translations and scaling transformations interactively, through the keyboard. The skeletal model is generated by connecting any pair of representative points, one from each of the bases in the basepair. In addition to the above mentioned manipulations, the base residues can be identified by using a locator and the distance between any pair of residues can be obtained. A sequence based color coded display allows easy identification of sequence repeats, such as runs of Adenines. The real time interactive manipulation of such skeletal models for large DNA/RNA double helices, can be used to trace the path of the nucleic acid chain in three dimensions and hence get a better idea of its topology, location of linear or curved regions, distances between far off regions in the sequence etc. A physical picture of these features will assist in understanding the relationship between base sequence, structure and biological function in nucleic acids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the results of shaking table tests on models of rigid-faced reinforced soil retaining walls in which reinforcement materials of different tensile strength were used. The construction of the model retaining walls in a laminar box mounted on a shaking table, the instrumentation and the results from the shaking table tests are described in detail and the effects of the reinforcement parameters on the acceleration response at different elevations of the retaining wall, horizontal soil pressures and face deformations are presented. It was observed from these tests that the horizontal face displacement response of the rigid-faced retaining walls was significantly affected by the inclusion of reinforcement and even low-strength polymer reinforcement was found to be efficient in significantly reducing the deformation of the face. The acceleration amplifications were, however, observed to be less influenced by the reinforcement parameters. The results obtained from this study are helpful in understanding the relative performance of reinforced soil retaining walls under the different test conditions used in the experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis consists of an introduction, four research articles and an appendix. The thesis studies relations between two different approaches to continuum limit of models of two dimensional statistical mechanics at criticality. The approach of conformal field theory (CFT) could be thought of as the algebraic classification of some basic objects in these models. It has been succesfully used by physicists since 1980's. The other approach, Schramm-Loewner evolutions (SLEs), is a recently introduced set of mathematical methods to study random curves or interfaces occurring in the continuum limit of the models. The first and second included articles argue on basis of statistical mechanics what would be a plausible relation between SLEs and conformal field theory. The first article studies multiple SLEs, several random curves simultaneously in a domain. The proposed definition is compatible with a natural commutation requirement suggested by Dubédat. The curves of multiple SLE may form different topological configurations, ``pure geometries''. We conjecture a relation between the topological configurations and CFT concepts of conformal blocks and operator product expansions. Example applications of multiple SLEs include crossing probabilities for percolation and Ising model. The second article studies SLE variants that represent models with boundary conditions implemented by primary fields. The most well known of these, SLE(kappa, rho), is shown to be simple in terms of the Coulomb gas formalism of CFT. In the third article the space of local martingales for variants of SLE is shown to carry a representation of Virasoro algebra. Finding this structure is guided by the relation of SLEs and CFTs in general, but the result is established in a straightforward fashion. This article, too, emphasizes multiple SLEs and proposes a possible way of treating pure geometries in terms of Coulomb gas. The fourth article states results of applications of the Virasoro structure to the open questions of SLE reversibility and duality. Proofs of the stated results are provided in the appendix. The objective is an indirect computation of certain polynomial expected values. Provided that these expected values exist, in generic cases they are shown to possess the desired properties, thus giving support for both reversibility and duality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Determining the sequence of amino acid residues in a heteropolymer chain of a protein with a given conformation is a discrete combinatorial problem that is not generally amenable for gradient-based continuous optimization algorithms. In this paper we present a new approach to this problem using continuous models. In this modeling, continuous "state functions" are proposed to designate the type of each residue in the chain. Such a continuous model helps define a continuous sequence space in which a chosen criterion is optimized to find the most appropriate sequence. Searching a continuous sequence space using a deterministic optimization algorithm makes it possible to find the optimal sequences with much less computation than many other approaches. The computational efficiency of this method is further improved by combining it with a graph spectral method, which explicitly takes into account the topology of the desired conformation and also helps make the combined method more robust. The continuous modeling used here appears to have additional advantages in mimicking the folding pathways and in creating the energy landscapes that help find sequences with high stability and kinetic accessibility. To illustrate the new approach, a widely used simplifying assumption is made by considering only two types of residues: hydrophobic (H) and polar (P). Self-avoiding compact lattice models are used to validate the method with known results in the literature and data that can be practically obtained by exhaustive enumeration on a desktop computer. We also present examples of sequence design for the HP models of some real proteins, which are solved in less than five minutes on a single-processor desktop computer Some open issues and future extensions are noted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The soil moisture characteristic (SMC) forms an important input to mathematical models of water and solute transport in the unsaturated-soil zone. Owing to their simplicity and ease of use, texture-based regression models are commonly used to estimate the SMC from basic soil properties. In this study, the performances of six such regression models were evaluated on three soils. Moisture characteristics generated by the regression models were statistically compared with the characteristics developed independently from laboratory and in-situ retention data of the soil profiles. Results of the statistical performance evaluation, while providing useful information on the errors involved in estimating the SMC, also highlighted the importance of the nature of the data set underlying the regression models. Among the models evaluated, the one possessing an underlying data set of in-situ measurements was found to be the best estimator of the in-situ SMC for all the soils. Considerable errors arose when a textural model based on laboratory data was used to estimate the field retention characteristics of unsaturated soils.