914 resultados para Mitral Valve
Resumo:
OBJECTIVE To validate a radioimmunoassay for measurement of procollagen type III amino terminal propeptide (PIIINP) concentrations in canine serum and bronchoalveolar lavage fluid (BALF) and investigate the effects of physiologic and pathologic conditions on PIIINP concentrations. SAMPLE POPULATION Sera from healthy adult (n = 70) and growing dogs (20) and dogs with chronic renal failure (CRF; 10), cardiomyopathy (CMP; 12), or degenerative valve disease (DVD; 26); and sera and BALF from dogs with chronic bronchopneumopathy (CBP; 15) and healthy control dogs (10 growing and 9 adult dogs). PROCEDURE A radioimmunoassay was validated, and a reference range for serum PIIINP (S-PIIINP) concentration was established. Effects of growth, age, sex, weight, CRF, and heart failure on S-PIIINP concentration were analyzed. In CBP-affected dogs, S-PIIINP and BALF-PIIINP concentrations were evaluated. RESULTS The radioimmunoassay had good sensitivity, linearity, precision, and reproducibility and reasonable accuracy for measurement of S-PIIINP and BALF-PIIINP concentrations. The S-PIIINP concentration reference range in adult dogs was 8.86 to 11.48 mug/L. Serum PIIINP concentration correlated with weight and age. Growing dogs had significantly higher S-PIIINP concentrations than adults, but concentrations in CRF-, CMP-, DVD-, or CBP-affected dogs were not significantly different from control values. Mean BALF-PIIINP concentration was significantly higher in CBP-affected dogs than in healthy adults. CONCLUSIONS AND CLINICAL RELEVANCE In dogs, renal or cardiac disease or CBP did not significantly affect S-PIIINP concentration; dogs with CBP had high BALF-PIIINP concentrations. Data suggest that the use of PIIINP as a marker of pathologic fibrosis might be limited in growing dogs.
Resumo:
BACKGROUND This study evaluated whether risk factors for sternal wound infections vary with the type of surgical procedure in cardiac operations. METHODS This was a university hospital surveillance study of 3,249 consecutive patients (28% women) from 2006 to 2010 (median age, 69 years [interquartile range, 60 to 76]; median additive European System for Cardiac Operative Risk Evaluation score, 5 [interquartile range, 3 to 8]) after (1) isolated coronary artery bypass grafting (CABG), (2) isolated valve repair or replacement, or (3) combined valve procedures and CABG. All other operations were excluded. Univariate and multivariate binary logistic regression were conducted to identify independent predictors for development of sternal wound infections. RESULTS We detected 122 sternal wound infections (3.8%) in 3,249 patients: 74 of 1,857 patients (4.0%) after CABG, 19 of 799 (2.4%) after valve operations, and 29 of 593 (4.9%) after combined procedures. In CABG patients, bilateral internal thoracic artery harvest, procedural duration exceeding 300 minutes, diabetes, obesity, chronic obstructive pulmonary disease, and female sex (model 1) were independent predictors for sternal wound infection. A second model (model 2), using the European System for Cardiac Operative Risk Evaluation, revealed bilateral internal thoracic artery harvest, diabetes, obesity, and the second and third quartiles of the European System for Cardiac Operative Risk Evaluation were independent predictors. In valve patients, model 1 showed only revision for bleeding as an independent predictor for sternal infection, and model 2 yielded both revision for bleeding and diabetes. For combined valve and CABG operations, both regression models demonstrated revision for bleeding and duration of operation exceeding 300 minutes were independent predictors for sternal infection. CONCLUSIONS Risk factors for sternal wound infections after cardiac operations vary with the type of surgical procedure. In patients undergoing valve operations or combined operations, procedure-related risk factors (revision for bleeding, duration of operation) independently predict infection. In patients undergoing CABG, not only procedure-related risk factors but also bilateral internal thoracic artery harvest and patient characteristics (diabetes, chronic obstructive pulmonary disease, obesity, female sex) are predictive of sternal wound infection. Preventive interventions may be justified according to the type of operation.
Resumo:
OBJECTIVES Long-term follow-up reports after implantation of the Shelhigh® (Shelhigh, Inc., NJ, USA) No-React® aortic valved conduit used for aortic root replacement do not exist. METHODS Between November 1998 and December 2007, the Shelhigh® No-React® aortic valved conduit was implanted in 291 consecutive patients with a mean age of 69.6 ± 9.1 years, and 33.7% were female (n = 98). Indications were annulo-aortic ectasia (n = 202), aortic valve stenosis combined with ascending aortic aneurysm (n = 67), acute type A aortic dissection (n = 29), endocarditis (n = 26) and other related pathologies (n = 48) including 62 patients with previous cardiac surgery. Data from two cardiac institutions were analysed retrospectively using SPSS (SPSS Software IBM, Inc., 2014, NY, USA). RESULTS Operative mortality was 10% (n = 29). Main cause of death was cardiac failure in 15 patients (51.8%), neurological events in 6 patients (20.7%), respiratory failure in 4 patients (13.8%), bleeding complications in 2 patients (6.9%) and gastrointestinal ischaemia in 2 cases (6.9%). There were 262 hospital survivors and all were entered in the follow-up study (100% complete). During the long-term follow-up (mean 70.3 ± 53.1 in months), a total of 126/262 patients (44.3%) died. Main causes of death in patients after discharge were cardiac (n = 37, 14.1%), neurological (n = 15, 5.7%) respiratory (n = 12, 4.6%), endocarditis (n = 12, 4.6%) and peripheral vascular disease (n = 5, 1.9%). In 29 (11.1%) patients, the cause of death could not be determined. Reoperation was required in 25 (8.6%) patients due to infection of the conduit (n = 9), aortoventricular disconnection (n = 4), pseudoaneurysm formation (n = 4) and structural valve degeneration (n = 8). Reoperations were performed 5.0 ± 3.8 (range 0.1-11.7) years after index surgery. CONCLUSIONS The Shelhigh® No-React® aortic valved conduit showed satisfactory short-term operative results. However, the long-term follow-up revealed a relatively high rate of deaths, which may be explained by the epidemiology of the patient group, but a substantial proportion of deaths could not be clarified. The overall rate of reoperation (8.6%) during the mid-term follow-up is worrisome and the failures due to aortoventricular disconnection, endocarditis and pseudoaneurysm formation remain unexplained. The redo-procedures were technically demanding. We recommend close follow-up of patients with the Shelhigh® No-React® aortic valved conduit, because besides classical structural valve degeneration, unexpected findings may be observed.
Resumo:
OBJECTIVES: Extensive endurance training and arterial hypertension are established risk factors for atrial fibrillation. We aimed to assess the proportion of masked hypertension in endurance athletes and the impact on cardiac remodeling, mechanics, and supraventricular tachycardias (SVT). METHODS: Male participants of a 10-mile race were recruited and included if office blood pressure was normal (<140/90 mmHg). Athletes were stratified into a masked hypertension and normotension group by ambulatory blood pressure. Primary endpoint was diastolic function, expressed as peak early diastolic mitral annulus velocity (E'). Left ventricular global strain, left ventricular mass/volume ratio, left atrial volume index, signal-averaged P-wave duration (SAPWD), and SVT during 24-h Holter monitoring were recorded. RESULTS: From 108 runners recruited, 87 were included in the final analysis. Thirty-three (38%) had masked hypertension. The mean age was 42 +/- 8 years. Groups did not differ with respect to age, body composition, cumulative training hours, and 10-mile race time. Athletes with masked hypertension had a lower E' and a higher left ventricular mass/volume ratio. Left ventricular global strain, left atrial volume index, SAPWD, and SVT showed no significant differences between the groups. In multiple linear regression analysis, masked hypertension was independently associated with E' (beta = -0.270, P = 0.004) and left ventricular mass/volume ratio (beta = 0.206, P = 0.049). Cumulative training hours was the only independent predictor for left atrial volume index (beta = 0.474, P < 0.001) and SAPWD (beta = 0.481, P < 0.001). CONCLUSION: In our study, a relevant proportion of middle-aged athletes had masked hypertension, associated with a lower diastolic function and a higher left ventricular mass/volume ratio, but unrelated to left ventricular systolic function, atrial remodeling, or SVT.
Resumo:
GOAL We present the development of a boneanchored port for the painless long-term hemodialytic treatment of patients with renal failure. This port is implanted behind the ear. METHODS The port was developed based on knowledge obtained from long-term experience with implantable hearing devices, which are firmly anchored to the bone behind the ear. This concept of bone anchoring was adapted to the requirements for a vascular access during hemodialysis. The investigational device is comprised of a base plate that is firmly fixed with bone screws to the bone behind the ear (temporal bone). A catheter leads from the base plate valve block through the internal jugular vein and into the right atrium. The valves are opened using a special disposable adapter, without any need to puncture the blood vessels. Between hemodialysis sessions the port is protected with a disposable cover. RESULTS Flow rate, leak tightness and purification were tested on mockups. Preoperative planning and the surgical procedure were verified in 15 anatomical human whole head specimens. CONCLUSION Preclinical evaluations demonstrated the technical feasibility and safety of the investigational device. SIGNIFICANCE Approximately 1.5 million people are treated with hemodialysis worldwide, and 25% of the overall cost of dialysis therapy results from vascular access problems. New approaches towards enhancing vascular access could potentially reduce the costs and complications of hemodialytic therapy.
Resumo:
This paper reviews the methods, benefits and challenges associated with the adoption and translation of computational fluid dynamics (CFD) modelling within cardiovascular medicine. CFD, a specialist area of mathematics and a branch of fluid mechanics, is used routinely in a diverse range of safety-critical engineering systems, which increasingly is being applied to the cardiovascular system. By facilitating rapid, economical, low-risk prototyping, CFD modelling has already revolutionised research and development of devices such as stents, valve prostheses, and ventricular assist devices. Combined with cardiovascular imaging, CFD simulation enables detailed characterisation of complex physiological pressure and flow fields and the computation of metrics which cannot be directly measured, for example, wall shear stress. CFD models are now being translated into clinical tools for physicians to use across the spectrum of coronary, valvular, congenital, myocardial and peripheral vascular diseases. CFD modelling is apposite for minimally-invasive patient assessment. Patient-specific (incorporating data unique to the individual) and multi-scale (combining models of different length- and time-scales) modelling enables individualised risk prediction and virtual treatment planning. This represents a significant departure from traditional dependence upon registry-based, population-averaged data. Model integration is progressively moving towards 'digital patient' or 'virtual physiological human' representations. When combined with population-scale numerical models, these models have the potential to reduce the cost, time and risk associated with clinical trials. The adoption of CFD modelling signals a new era in cardiovascular medicine. While potentially highly beneficial, a number of academic and commercial groups are addressing the associated methodological, regulatory, education- and service-related challenges.
Resumo:
Pulmonary emphysema causes decrease in lung function due to irreversible dilatation of intrapulmonary air spaces, which is linked to high morbidity and mortality. Lung volume reduction (LVR) is an invasive therapeutical option for pulmonary emphysema in order to improve ventilation mechanics. LVR can be carried out by lung resection surgery or different minimally invasive endoscopical procedures. All LVR-options require mandatory preinterventional evaluation to detect hyperinflated dysfunctional lung areas as target structures for treatment. Quantitative computed tomography can determine the volume percentage of emphysematous lung and its topographical distribution based on the lung's radiodensity. Modern techniques allow for lobebased quantification that facilitates treatment planning. Clinical tests still play the most important role in post-interventional therapy monitoring, but CT is crucial in the detection of postoperative complications and foreshadows the method's high potential in sophisticated experimental studies. Within the last ten years, LVR with endobronchial valves has become an extensively researched minimally-invasive treatment option. However, this therapy is considerably complicated by the frequent occurrence of functional interlobar shunts. The presence of "collateral ventilation" has to be ruled out prior to valve implantations, as the presence of these extraanatomical connections between different lobes may jeopardize the success of therapy. Recent experimental studies evaluated the automatic detection of incomplete lobar fissures from CT scans, because they are considered to be a predictor for the existence of shunts. To date, these methods are yet to show acceptable results. KEY POINTS Today, surgical and various minimal invasive methods of lung volume reduction are in use. Radiological and nuclear medical examinations are helpful in the evaluation of an appropriate lung area. Imaging can detect periinterventional complications. Reduction of lung volume has not yet been conclusively proven to be effective and is a therapeutical option with little scientific evidence.
Resumo:
OBJECTIVE Endoscopic lung volume reduction (ELVR) with valves has been shown to improve COPD patients with severe emphysema. However, a major complication is pneumothoraces, occurring typically soon after valve implantation, with severe consequences if not managed promptly. Based on the knowledge that strain activity is related to a higher risk of pneumothoraces, we asked whether modifying post-operative medical care with the inclusion of strict short-term limitation of strain activity is associated with a lower incidence of pneumothorax. METHODS Seventy-two (72) emphysematous patients without collateral ventilation were treated with bronchial valves and included in the study. Thirty-two (32) patients received standard post-implantation medical management (Standard Medical Care (SMC)), and 40 patients received a modified medical care that included an additional bed rest for 48 hours and cough suppression, as needed (Modified Medical Care (MMC)). RESULTS The baseline characteristics were similar for the two groups, except there were more males in the SMC cohort. Overall, ten pneumothoraces occurred up to four days after ELVR, eight pneumothoraces in the SMC, and only two in the MMC cohorts (p=0.02). Complicated pneumothoraces and pneumothoraces after upper lobe treatment were significantly lower in MMC (p=0.02). Major clinical outcomes showed no significant differences between the two cohorts. CONCLUSIONS In conclusion, modifying post-operative medical care to include bed rest for 48 hours after ELVR and cough suppression, if needed, might reduce the incidence of pneumothoraces. Prospective randomized studies with larger numbers of well-matched patients are needed to confirm the data.
Resumo:
Millennial-scale climate changes during the last glacial period and deglaciation were accompanied by rapid changes in atmospheric CO2 that remain unexplained. While the role of the Southern Ocean as a ’control valve’ on ocean–atmosphere CO2 exchange has been emphasized, the exact nature of this role, in particular the relative contributions of physical (for example, ocean dynamics and air–sea gas exchange) versus biological processes (for example, export productivity), remains poorly constrained. Here we combine reconstructions of bottom-water [O2], export production and 14C ventilation ages in the sub-Antarctic Atlantic, and show that atmospheric CO2 pulses during the last glacial- and deglacial periods were consistently accompanied by decreases in the biological export of carbon and increases in deep-ocean ventilation via southern-sourced water masses. These findings demonstrate how the Southern Ocean’s ’organic carbon pump’ has exerted a tight control on atmospheric CO2, and thus global climate, specifically via a synergy of both physical and biological processes.
Resumo:
Objectives. Predict who will develop a dissection. To create male and female prediction models using the risk factors: age, ethnicity, hypertension, high cholesterol, smoking, alcohol use, diabetes, heart attack, congestive heart failure, congenital and non-congenital heart disease, Marfan syndrome, and bicuspid aortic valve. ^ Methods. Using 572 patients diagnosed with aortic aneurysms, a model was developed for each of males and females using 80% of the data and then verified using the remaining 20% of the data. ^ Results. The male model predicted the probability of a male in having a dissection (p=0.076) and the female model predicted the probability of a female in having a dissection (p=0.054). The validation models did not support the choice of the developmental models. ^ Conclusions. The best models obtained suggested that those who are at a greater risk of having a dissection are males with non-congenital heart disease and who drink alcohol, and females with non-congenital heart disease and bicuspid aortic valve.^
Resumo:
Background: Heart failure (CHF) is the most frequent and prognostically severe symptom of aortic stenosis (AS), and the most common indication for surgery. The mainstay of treatment for AS is aortic valve replacement (AVR), and the main indication for an AVR is development of symptomatic disease. ACC/AHA guidelines define severe AS as an aortic valve area (AVA) ≤1cm², but there is little data correlating echocardiogram AVA with the onset of symptomatic CHF. We evaluated the risk of developing CHF with progressively decreasing echocardiographic AVA. We also compared echocardiographic AVA with Jet velocity (V2) and indexed AVA (AVAI) to assess the best predictor of development of symptomatic CHF.^ Methods and Results: This retrospective cohort study evaluated 518 patients with asymptomatic moderate or severe AS from a single community based cardiology practice. A total of 925 echocardiograms were performed over an 11-year period. Each echocardiogram was correlated with concurrent clinical assessments while the investigator was blinded to the echocardiogram severity of AS. The Cox Proportional hazards model was used to analyze the relationship between AVA and the development of CHF. The median age of patients at entry was 76.1 years, with 54% males. A total of 116 patients (21.8%) developed new onset CHF during follow-up. Compared to patients with AVA >1.0cm², patients with lower AVA had an exponentially increasing risk of developing CHF for each 0.2cm² decrement in AVA, becoming statistically significant only at an AVA less than 0.8 cm². Also, compared to V2 and AVAI, AVA added more information to assessing risk for development of CHF (p=0.041). ^ Conclusion: In patients with normal or mildly impaired LVEF, the risk of CHF rises exponentially with decreasing valve area and becomes statistically significant after AVA falls below 0.8cm². AVA is a better predictor of CHF when compared to V2 or AVAI.^
Resumo:
Left ventricular outflow tract (LVOT) defects are an important group of congenital heart defects (CHDs) because of their associated mortality and long-term complications. LVOT defects include aortic valve stenosis (AVS), coarctation of aorta (CoA), and hypoplastic left heart syndrome (HLHS). Despite their clinical significance, their etiology is not completely understood. Even though the individual component phenotypes (AVS, CoA, and HLHS) may have different etiologies, they are often "lumped" together in epidemiological studies. Though "lumping" of component phenotypes may improve the power to detect associations, it may also lead to ambiguous findings if these defects are etiologically distinct. This is due to potential for effect heterogeneity across component phenotypes. ^ This study had two aims: (1) to identify the association between various risk factors and both the component (i.e., split) and composite (i.e., lumped) LVOT phenotypes, and (2) to assess the effect heterogeneity of risk factors across component phenotypes of LVOT defects. ^ This study was a secondary data analysis. Primary data were obtained from the Texas Birth Defect Registry (TBDR). TBDR uses an active surveillance method to ascertain birth defects in Texas. All cases of non complex LVOT defects which met our inclusion criteria during the period of 2002–2008 were included in the study. The comparison groups included all unaffected live births for the same period (2002–2008). Data from vital statistics were used to evaluate associations. Statistical associations between selected risk factors and LVOT defects was determined by calculating crude and adjusted prevalence ratio using Poisson regression analysis. Effect heterogeneity was evaluated using polytomous logistic regression. ^ There were a total of 2,353 cases of LVOT defects among 2,730,035 live births during the study period. There were a total of 1,311 definite cases of non-complex LVOT defects for analysis after excluding "complex" cardiac cases and cases associated with syndromes (n=168). Among infant characteristics, males were at a significantly higher risk of developing LVOT defects compared to females. Among maternal characteristics, significant associations were seen with maternal age > 40 years (compared to maternal age 20–24 years) and maternal residence in Texas-Mexico border (compared to non-border residence). Among birth characteristics, significant associations were seen with preterm birth and small for gestation age LVOT defects. ^ When evaluating effect heterogeneity, the following variables had significantly different effects among the component LVOT defect phenotypes: infant sex, plurality, maternal age, maternal race/ethnicity, and Texas-Mexico border residence. ^ This study found significant associations between various demographic factors and LVOT defects. While many findings from this study were consistent with results from previous studies, we also identified new factors associated with LVOT defects. Additionally, this study was the first to assess effect heterogeneity across LVOT defect component phenotypes. These findings contribute to a growing body of literature on characteristics associated with LVOT defects. ^
Resumo:
The weighing device comprises a tension load cell including an upper liquid chamber and a lower air chamber which has a volume much greater than the volume of the liquid chamber. The weight of a suspended load and the load supporting structure on the load cell are applied on both chambers. A gauge reads the liquid pressure in the upper chamber and a valve unit connectible to a source of air under pressure is connected to the air chamber. The load cell is tared by initially adjusting the air pressure in the lower chamber to produce a zero reading on the gauge. When a load is applied on the device, the volume displacement of the air chamber is small relative to the volume displacement of the liquid in the upper chamber. The volume of the air chamber thus remains substantially constant so that the gauge indicates directly the net weight of the applied load.
Resumo:
Ostracods secrete their valve calcite within a few hours or days, therefore, its isotopic composition records ambient environmental conditions of only a short time span. Hydrographic changes between the calcification of individuals lead to a corresponding range (max.-min.) in the isotope values when measuring several (>=5) single valves from a specific sediment sample. Analyses of living (stained) ostracods from the Kara Sea sediment surface revealed high ranges of >2per mil of d18O and d13C at low absolute levels (d18O: <3per mil, d13C: <-3per mil) near the river estuaries of Ob and Yenisei and low ranges of not, vert, similar1per mil at higher absolute levels (d18O: 2-5.4per mil, d13C: -3 per mil to -1.5per mil) on the shelf and in submarine paleo-river channels. Comparison with a hydrographic data base and isotope measurements of bottom water samples shows that the average and the span of the ostracod-based isotope ranges closely mirror the long-term means and variabilities (standard deviation) of bottom water temperature and salinity. The bottom hydrography in the southern part of the Kara Sea shows strong response to the river discharge and its extreme seasonal and interannual variability. Less variable hydrographic conditions are indicative for deeper shelf areas to the north, but also for areas near the river estuaries along submarine paleo-river channels, which act as corridors for southward flowing cold and saline bottom water. Isotope analyses on up to five single ostracod valves per sample in the lower section (8-7 cal. ka BP) of a sediment core north of Yenisei estuary revealed d18O and d13C values which on average are lower by 0.6? in both, d18O and d13C, than in the upper core section (<5 cal. ka BP). The isotope shifts illustrate the decreasing influence of isotopically light river water at the bottom as a result of the southward retreat of the Yenisei river mouth from the coring site due to global sea level rise. However, the ranges (max.-min.) in the single-valve d18O and d13C data of the individual core samples are similar in the upper and in the lower core section, although a higher hydrographic variability is expected prior to 7 cal. ka BP due to river proximity. This lack of variability indicates the southward flow of cold, saline water along a submarine paleo-river channel, formerly existing at the core location. Despite shallowing of the site due to sediment filling of the channel and isostatic uplift of the area, the hydrographic variability at the core location remained low during the Late Holocene, because the shallowing proceeded synchronously with the retreat of the river mouth due to the global sea level rise