939 resultados para Microbially conditioned leaves
Resumo:
In the Hebbian postulate, transiently reverberating cellular ensembles can sustain activity to facilitate temporal coincidence detection. Auditory fear conditioning is believed to be formed in the lateral amygdala (LA), by way of plasticity at auditory input synapses on principal neurons. To evaluate the contribution of LA cellular ensembles in the formation of conditioned fear memories, we investigated the LA micro-circuitry by electrophysiological and anatomical approaches. Polysynaptic field potentials evoked in the LA by stimulation of auditory thalamus(MGm/PIN) or auditory cortical (TE3) afferents were analyzed in vitro and in vivo. In vivo, two potentials were identified following stimulation of either pathway. In vitro, these multiple potentials were revealed by adding 75uM Picrotoxin or 30uM Bicuculine, with the first potential peaking at 15-20 ms, followed by two additional potentials at 20 – 25 and 30 – 35 ms, respectively. These data show single stimulation events can result in multiple synchronized excitatory events within the lateral amygdala. In order to determine underlying mechanisms of auditory signal propagation, LA principal neuron axon collateral trajectory patterns and morphology were analyzed. Neurons were found to have local axon collaterals that are topographically organized. Each axon collateral within the LA totaled 14.1 ± 2.73mm, had 29.8 ± 9.1 branch points and 1870.8 ± 1035 boutons (n=9). Electrophysiological and anatomical data show that a network of extensive axon collaterals within the LA may facilitate preservation of auditory afferent signals.
Resumo:
In recent years, the practice of contemporary dancers has altered significantly in the transition from canonical choreographic vocabularies to a proliferation of choreographic signatures within mainstream and independent dance. Dancers are often required to collaborate creatively on the formation of choreographic material, thus engaging conceptually with emerging cultural paradigms. This book explores the co-creative practice of contemporary dancers solely from the point of view of the dancer. It reveals multiple dancing perspectives, drawn from interviews, current writing and evocative accounts from inside the choreographic process, illuminating the myriad ways that dancers contribute to the production of contemporary dance culture. A key insight of the book is that a dancer's signature way of being is a 'moving identity', which incorporates past dance experience, anatomical structures and conditioned human movement as a self-in-process. The moving identity is the movement signature that the dancer forms throughout a career path.
Resumo:
In recent years, many studies have provided evidence that exosomes secreted by cells contain various components, including microRNAs [1]. It is thought that exosomes have important roles in many biological processes. However, the role of exosomes and their components, especially miRNAs, in wound healing is poorly understood. In order to understand whether or not primary human epidermal keratinocytes and dermal fibroblasts, two important cell types contributing to wound healing process, release exosomes and what species of wound healing-associated miRNAs accumulate in these vesicles, this project will use a combination of methods to isolate and characterize exosomes, to profile exosomal cargo’s, especially miRNAs in exosomes. The results showed that keratinocytes and fibroblasts released exosomes into conditioned media and these exosomes contain some target miRNAs.
Resumo:
Background Ugni molinae Turcz. is one of the most studied species of South American Myrtaceae due to its edible fruits and foliar medicinal compounds. However, there is no anatomical study of the leaves or secretory cavities. This paper seeks to describe the leaf micromorphology and anatomy of the species using standard protocols for light and scanning electron microscopy. Secretory cavities were anatomically characterized in young and mature leaves. Histochemical staining of the cavities was performed. Results The leaves of U. molinae are hypostomatic, have a wavy surface and possess scattered hairs. Leaf anatomical features include dorsiventral mesophyll, two to three layers of palisade parenchyma with abundant chloroplasts, calcium oxalate crystals and internal phloem in vascular bundles. Schizogenous secretory cavities are present on the abaxial surface and are mainly located on the margins of the leaves. Histochemical tests of these cavities suggest the presence of lipophilic substances. Conclusions This is the first study of secretory cavities in Chilean Myrtaceae. In general, micromorphological and anatomical characters are similar to other species of the family. The present findings could provide valuable anatomical information for future research in South American Myrtaceae.
Resumo:
This paper examines the effect of individual transferable quota regimes on technology choice, such as choice of vessel size, by using the laboratory experiment method. We find that even if vessel sizes change over time, the quota price can converge to the fundamental value conditioned on the vessels chosen. We also find that subjects choose their vessel type to maximise their profits based on the quota trading prices in the previous period. This result implies that the efficiency of quota markets in the beginning period is important because any inefficiency in quota markets may affect vessel sizes in ensuing periods. Moreover, we find that the initial allocations may significantly influence vessel sizes through two channels: first, a higher initial allocation to a subject increases the likelihood that the subject invests in a large-sized vessel; second, the quota price may be higher and more unstable under unequal allocation than under equal allocation; thus, whether the allocation is equal influences subjects' choice of vessel type. © 2014 Australian Agricultural and Resource Economics Society Inc.
Resumo:
Introduction Chronic wounds are an area of major concern. The on-going and in-direct costs are substantial, reaching far beyond the costs of the hospitalization and associated care. As a result, pharmacological therapies have been developed to address treatment insufficiencies, however, the availability of drugs capable of promoting the wound repair process still remain limited. The wound healing properties of various herbal plants is well recognised amongst indigenous Australians. Hence, based on traditional accounts, we evaluated the wound healing potential of two Australian native plants. Methods Bioactive compounds were methanol extracted from dried plant leaves that were commercially sourced. Primary keratinocyte (Kc) and fibroblast (Fib) cells (denoted as Kc269, Kc274, Kc275, Kc276 and Fib274) obtained from surgical discarded tissue were cultured in 48-well plates and incubated (37⁰C, 5% CO2) overnight. The growth media was discarded and replaced with fresh growth media plus various concentrations (15.12 µg/mL, 31.25 µg/mL, 62.5 µg/mL, 125 µg/mL, 250 µg/mL and 500 µg/mL) of the plant extracts. Cellular responses were measured using the alamarBlue® assay and the CyQUANT® assay. Plant extracts in the aqueous phase were prepared by boiling whole leaves in water and taking aqueous phase samples at various (1, 2 , 5 minutes boiling) time points. Plant leaves were either added before the water was boiled (cold boiled) or after the water was boiled (hot boiled). The final concentrations of the aqueous plant extracts were 3.3 ng/mL (± 0.3 ng/mL) per sample. The antimicrobial properties of the plant extracts were tested using the well diffusion assay method against Staphylococcus aureus, Klebsiella pnuemoniae and methicillin resistant S. aureus and Bacillus cereus. Results Assay results from the almarBlue® and CYQUANT® assays indicated that extracts from both native plants at various time points (0, 24 and 48 hours) and concentrations (31.25 mg/mL, 62.5 mg/mL, and 125 mg/mL) were significantly higher (n=3, p=0.03 for Kc269, p=0.04 for Kc274, p=0.02 for Fib274, p=0.04 for Kc275 and p=0.001 for Kc276) compared with the untreated controls. Neither plant extract demonstrated cytotoxic effects. Significant antimicrobial activity against methicillin resistant Staphylococcus aureus (p=0.0009 for hot boiled plant A, n=2, p=0.034 for cold boiled plant A, n=2) K. pnuemoniae (p=0.0009 for hot boiled plant A, n=2, p=0.002 for cold boiled plant A, n=2) and B. cereus (p=0.0009 for hot boiled plant A, n=2, p=0.003 for cold boiled plant A, n=2) was observed at concentrations of 3.2 ng/mL for plant A and 3.4 ng/mL for plant B. Conclusion Both native plants contain bioactive compounds that increase cellular metabolic rates and total nucleic acid content. Neither plant was shown to be cytotoxic. Furthermore, both exhibited significant antimicrobial activity.
Resumo:
Given that there is increasing recognition of the effect that submillimetre changes in collimator position can have on radiotherapy beam dosimetry, this study aimed to evaluate the potential variability in small field collimation that may exist between otherwise matched linacs. Field sizes and field output factors were measured using radiochromic film and an electron diode, for jaw- and MLC-collimated fields produced by eight dosimetrically matched Varian iX linacs (Varian Medical Systems, Palo Alto, USA). This study used nominal sizes from 0.6×0.6 to 10×10 cm215 , for jaw-collimated fields,and from 1×1 to 10×10 cm216 , for MLC-collimated fields, delivered from a zero (head up, beam directed vertically downward) gantry angle. Differences between the field sizes measured for the eight linacs exceeded the uncertainty of the film measurements and the repositioning uncertainty of the jaws and MLCs on one linac. The dimensions of fields defined by MLC leaves were more consistent between linacs, while also differing more from their nominal values than fields defined by orthogonal jaws. The field output factors measured for the different linacs generally increased with increasing measured field size for the nominal 0.6×0.6 and 1×1 cm2 fields, and became consistent between linacs for nominal field sizes of 2×2 cm2 25 and larger. The inclusion in radiotherapy treatment planning system beam data of small field output factors acquired in fields collimated by jaws (rather than the more-reproducible MLCs), associated with either the nominal or the measured field sizes, should be viewed with caution. The size and reproducibility of the fields (especially the small fields) used to acquire treatment planning data should be investigated thoroughly as part of the linac or planning system commissioning process. Further investigation of these issues, using different linac models, collimation systems and beam orientations, is recommended.
Resumo:
This project constructed virtual plant leaf surfaces from digitised data sets for use in droplet spray models. Digitisation techniques for obtaining data sets for cotton, chenopodium and wheat leaves are discussed and novel algorithms for the reconstruction of the leaves from these three plant species are developed. The reconstructed leaf surfaces are included into agricultural droplet spray models to investigate the effect of the nozzle and spray formulation combination on the proportion of spray retained by the plant. A numerical study of the post-impaction motion of large droplets that have formed on the leaf surface is also considered.
Resumo:
The anthocyanin biosynthetic pathway is regulated by a transcription factor complex consisting of an R2R3 MYB, a bHLH, and a WD40. Although R2R3 MYBs belonging to the anthocyanin-activating class have been identified in many plants, and their role well elucidated, the subgroups of bHLH implicated in anthocyanin regulation seem to be more complex. It is not clear whether these potential bHLH partners are biologically interchangeable with redundant functions, or even if heterodimers are involved. In this study, AcMYB110, an R2R3 MYB isolated from kiwifruit (Actinidia sp.) showing a strong activation of the anthocyanin pathway in tobacco (Nicotiana tabacum) was used to examine the function of interacting endogenous bHLH partners. Constitutive expression of AcMYB110 in tobacco leaves revealed different roles for two bHLHs, NtAN1 and NtJAF13. A hierarchical mechanism is shown to control the regulation of transcription factors and consequently of the anthocyanin biosynthetic pathway. Here, a model is proposed for the regulation of the anthocyanin pathway in Solanaceous plants in which AN1 is directly involved in the activation of the biosynthetic genes, whereas JAF13 is involved in the regulation of AN1 transcription.
Resumo:
Ascorbate (vitamin C) is an essential antioxidant and enzyme cofactor in both plants and animals. Ascorbate concentration is tightly regulated in plants, partly to respond to stress. Here, we demonstrate that ascorbate concentrations are determined via the posttranscriptional repression of GDP-l-galactose phosphorylase (GGP), a major control enzyme in the ascorbate biosynthesis pathway. This regulation requires a cis-acting upstream open reading frame (uORF) that represses the translation of the downstream GGP open reading frame under high ascorbate concentration. Disruption of this uORF stops the ascorbate feedback regulation of translation and results in increased ascorbate concentrations in leaves. The uORF is predicted to initiate at a noncanonical codon (ACG rather than AUG) and encode a 60- to 65-residue peptide. Analysis of ribosome protection data from Arabidopsis thaliana showed colocation of high levels of ribosomes with both the uORF and the main coding sequence of GGP. Together, our data indicate that the noncanonical uORF is translated and encodes a peptide that functions in the ascorbate inhibition of translation. This posttranslational regulation of ascorbate is likely an ancient mechanism of control as the uORF is conserved in GGP genes from mosses to angiosperms.
Resumo:
In strengthening systems, the CFRP (Carbon Fibre Reinforced Polymer) materials typically have excellent resistance against environmental conditions; however, the performance of adhesives between CFRP and steel is generally affected by various environmental conditions such as marine environment, cold and hot weather. This paper presents the comparative durability study of CFRP strengthened tubular steel structures by using two different adhesives such as MBrace saturant and Araldite K630 under four-point bending. The program consisted of testing twelve CFRP strengthened specimens having treated with epoxy based adhesion promoter, untreated surface and one unstrengthened specimen and conditioned under cold weather for 3 and 6 months to determine the environmental durability. The beams were then loaded to failure in quasi-static manner under four-point bending. The structural responses of CFRP strengthened tubular steel beams were compared in terms of failure load, stiffness and modes of failure. The research findings show that the cold weather immersion had adversely affected the durability of CFRP strengthened steel members. Design factor is also proposed to address the short-terms durability performance under cold weather.
Resumo:
Species of fleshy-fruited Myrtaceae are generally associated with humid environments and their vegetative anatomy is mainly mesophytic. Myrceugenia rufa is an endemic and rare species from arid zones of the coast of central Chile and there are no anatomical studies regarding its leaf anatomy and environmental adaptations. Here we describe the leaf micromorphology and anatomy of the species using standard protocols for light and scanning electron microscopy. The leaf anatomy of M. rufa matches that of other Myrtaceae, such as presence of druses, schizogenous secretory ducts and internal phloem. Leaves of M. rufa exhibit a double epidermis, thick cuticle, abundant unicellular hairs, large substomatal chambers covered by trichomes and a dense palisade parenchyma. Leaf characters of M. rufa confirm an anatomical adaptation to xerophytic environments.
Resumo:
Appropriate selection of scaffold architecture is a key challenge in cartilage tissue engineering. Gap junction-mediated intercellular contacts play important roles in precartilage condensation of mesenchymal cells. However, scaffold architecture could potentially restrict cell-cell communication and differentiation. This is particularly important when choosing the appropriate culture platform as well as scaffold-based strategy for clinical translation, that is, hydrogel or microtissues, for investigating differentiation of chondroprogenitor cells in cartilage tissue engineering. We, therefore, studied the influence of gap junction-mediated cell-cell communication on chondrogenesis of bone marrow-derived mesenchymal stromal cells (BM-MSCs) and articular chondrocytes. Expanded human chondrocytes and BM-MSCs were either (re-) differentiated in micromass cell pellets or encapsulated as isolated cells in alginate hydrogels. Samples were treated with and without the gap junction inhibitor 18-α glycyrrhetinic acid (18αGCA). DNA and glycosaminoglycan (GAG) content and gene expression levels (collagen I/II/X, aggrecan, and connexin 43) were quantified at various time points. Protein localization was determined using immunofluorescence, and adenosine-5'-triphosphate (ATP) was measured in conditioned media. While GAG/DNA was higher in alginate compared with pellets for chondrocytes, there were no differences in chondrogenic gene expression between culture models. Gap junction blocking reduced collagen II and extracellular ATP in all chondrocyte cultures and in BM-MSC hydrogels. However, differentiation capacity was not abolished completely by 18αGCA. Connexin 43 levels were high throughout chondrocyte cultures and peaked only later during BM-MSC differentiation, consistent with the delayed response of BM-MSCs to 18αGCA. Alginate hydrogels and microtissues are equally suited culture platforms for the chondrogenic (re-)differentiation of expanded human articular chondrocytes and BM-MSCs. Therefore, reducing direct cell-cell contacts does not affect in vitro chondrogenesis. However, blocking gap junctions compromises cell differentiation, pointing to a prominent role for hemichannel function in this process. Therefore, scaffold design strategies that promote an increasing distance between single chondroprogenitor cells do not restrict their differentiation potential in tissue-engineered constructs.
Resumo:
The use of malathion in fruit fly protein bait sprays has raised serious concerns due to its adverse effects on non-target organisms. This has necessitated the evaluation of novel reduced-risk compounds. This study evaluated the effects of spinosad, fipronil, malathion and chlorpyrifos mixed with fruit fly protein bait (Mauri Pinnacle protein®) on attraction, feeding and mortality of the Queensland fruit fly, Bactrocera tryoni (Froggatt). The effects of outdoor weathering of these mixtures on fly mortality were also determined. In field-cage experiment, protein-starved flies showed the same level of attraction to baits containing spinosad, fipronil, malathion, chlorpyrifos and protein alone used as control. Female protein-starved flies were deterred from feeding on baits containing malathion and chlorpyrifos compared to baits containing spinosad, fipronil and protein alone. Baits containing malathion and chlorpyrifos caused higher fly mortality and rapid fly knock down than spinosad and fipronil. However, spinosad acted slowly and caused an increase in fly mortality over time, causing up to 90% fly mortality after 72-h. Baits containing malathion and chlorpyrifos, applied on citrus leaves and weathered outdoors, had longer residual effectiveness in killing flies than spinosad and fipronil. Residual effectiveness of the spinosad bait mixture waned significantly after 3 days of outdoor weathering. Results suggest that spinosad and fipronil can be potential alternatives for malathion in protein bait sprays.
Resumo:
Silk fibroin provides a promising biomaterial for ocular tissue reconstruction including the damaged outer blood-retinal barrier of patients afflicted with age-related macular degeneration (AMD). The aim of the present study was to evaluate the function of retinal pigment epithelial (RPE) cells in vitro, when grown on fibroin membranes manufactured to a similar thickness as Bruch’s membrane (3 μm). Confluent cultures of RPE cells (ARPE-19) were established on fibroin membranes and maintained under conditions designed to promote maturation over 4 months. Control cultures were grown on polyester cell culture well inserts (Transwell). Cultures established on either material developed a cobblestoned morphology with partial pigmentation within 12 weeks. Immunocytochemistry at 16 weeks revealed a similar distribution pattern between cultures for F-actin, ZO-1, ezrin, cytokeratin pair 8/18, RPE-65 and Na+/K+-ATPase. Electron microscopy revealed that cultures grown on fibroin displayed a rounder apical surface with a more dense distribution of microvilli. Both cultures avidly ingested fluorescent microspheres coated with vitronectin and bovine serum albumin (BSA), but not controls coated with BSA alone. VEGF and PEDF were detected in the conditioned medium collected from above and below both membrane types. Levels of PEDF were significantly higher than for VEGF on both membranes and a trend was observed towards larger amounts of PEDF in apical compartments. These findings demonstrate that RPE cell functions on fibroin membranes are equivalent to those observed for standard test materials (polyester membranes). As such, these studies support advancement to studies of RPE cell implantation on fibroin membranes in a preclinical model.