944 resultados para Metal insulator transition


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In November 1999, the Queensland Health (QH) Transition to Practice Nurse Education Program - Intensive Care (TPNEP-IC) was initiated in QH Intensive Care Units (ICUs) across Queensland. This 12-month, state-wide, workplace based education program has set minimum standards for intensive care nursing education and therefore minimum standards for intensive care nursing practice in QH. In the 12 years of operation, 824 nurses have completed TPNEP-IC, 761 achieving academic credit status and 453 utilising this academic credit status to undertake postgraduate study in critical/intensive care nursing at three Queensland universities. These outcomes were achieved through the appointment of nurse educators within ICUs who, through a united and strong commitment to this state-wide approach formed collaborative professional networks, which resulted in the development, implementation and maintenance of the program. Furthermore, these networks enabled a framework of support for discussion and dissemination of evidence based practice, to endorse quality processes for TPNEP-IC and to nurture leadership potential among educators. Challenges to overcome included obtaining adequate resources to support all aspects of the program, gaining local management and administrative support, and embedding TPNEP-IC within ICU culture. The 12 years of operation of the program have demonstrated its long term sustainability. The program is being launched through a new blended learning approach utilising e-learning strategies. To capitalise on the current success, a strong commitment by all stakeholders will be required to ensure the ongoing sustainability of the program.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates theoretically and numerically local heating effects in plasmon nanofocusing structures with a particular focus on the sharp free-standing metal wedges. The developed model separates plasmon propagation in the wedge from the resultant heating effects. Therefore, this model is only applicable where the temperature increments in a nanofocusing structure are sufficiently small not to result in significant variations of the metal permittivity in the wedge. The problem is reduced to a one-dimensional heating model with a distributed heat source resulting from plasmon dissipation in the metal wedge. A simple heat conduction equation governing the local heating effects in a nanofocusing structure is derived and solved numerically for plasmonic pulses of different lengths and reasonable energies. Both the possibility of achieving substantial local temperature increments in the wedge (with a significant self-influence of the heating plasmonic pulses), and the possibility of relatively weak heating (to ensure the validity of the previously developed nanofocusing theory) are demonstrated and discussed, including the future applications of the obtained results. Applicability conditions for the developed model are also derived and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Significant cleavage by hammerhead ribozymes requires activation by divalent metal ions. Several models have been proposed to account for the influence of metal ions on hammerhead activity. A number of recent papers have presented data that have been interpreted as supporting a one-metal-hydroxide-ion mechanism. In addition, a solvent deuterium isotope effect has been taken as evidence against a proton transfer in the rate-limiting step of the cleavage reaction. We propose that these data are more easily explained by a two-metal-ion mechanism that does not involve a metal hydroxide, but does involve a proton transfer in the rate-limiting step.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is very difficult to selectively oxidise stable compounds such as toluene and xylenes to useful chemicals with molecular oxygen (O 2) under moderate conditions. To achieve high conversion and less over-oxidised products, a new class of photocatalysts, metal hydroxide nanoparticles grafted with alcohols, is devised. They can efficiently oxidise alkyl aromatic compounds with O 2 using visible or ultraviolet light or even sunlight to generate the corresponding aldehydes, alcohols and acids at ambient temperatures and give very little over-oxidation. For example toluene can be oxidised with a 23% conversion after a 48-hour exposure to sunlight with 85% of the product being benzaldehyde, and only a trace of CO 2.The surface complexes grafted onto metal hydroxides can absorb light, generating free radicals on the surface, which then initiate aerobic oxidation of the stable alkyl aromatic molecules with high product selectivity. This mechanism is distinctly different from those of any known catalysts. The use of the new photocatalysts as a controlled means to generate surface radicals through light excitation allows us to drive the production of fine organic chemicals at ambient temperatures with sunlight. The process with the new photocatalysts is especially valuable for temperature-sensitive syntheses and a greener process than many conventional thermal reactions. © 2012 The Royal Society of Chemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the context of increasing demand for potable water and the depletion of water resources, stormwater is a logical alternative. However, stormwater contains pollutants, among which metals are of particular interest due to their toxicity and persistence in the environment. Hence, it is imperative to remove toxic metals in stormwater to the levels prescribed by drinking water guidelines for potable use. Consequently, various techniques have been proposed, among which sorption using low cost sorbents is economically viable and environmentally benign in comparison to other techniques. However, sorbents show affinity towards certain toxic metals, which results in poor removal of other toxic metals. It was hypothesised in this study that a mixture of sorbents that have different metal affinity patterns can be used for the efficient removal of a range of toxic metals commonly found in stormwater. The performance of six sorbents in the sorption of Al, Cr, Cu, Pb, Ni, Zn and Cd, which are the toxic metals commonly found in urban stormwater, was investigated to select suitable sorbents for creating the mixtures. For this purpose, a multi criteria analytical protocol was developed using the decision making methods: PROMETHEE (Preference Ranking Organisation METHod for Enrichment Evaluations) and GAIA (Graphical Analysis for Interactive Assistance). Zeolite and seaweed were selected for the creation of trial mixtures based on their metal affinity pattern and the performance on predetermined selection criteria. The metal sorption mechanisms employed by seaweed and zeolite were defined using kinetics, isotherm and thermodynamics parameters, which were determined using the batch sorption experiments. Additionally, the kinetics rate-limiting steps were identified using an innovative approach using GAIA and Spearman correlation techniques developed as part of the study, to overcome the limitation in conventional graphical methods in predicting the degree of contribution of each kinetics step in limiting the overall metal removal rate. The sorption kinetics of zeolite was found to be primarily limited by intraparticle diffusion followed by the sorption reaction steps, which were governed mainly by the hydrated ionic diameter of metals. The isotherm study indicated that the metal sorption mechanism of zeolite was primarily of a physical nature. The thermodynamics study confirmed that the energetically favourable nature of sorption increased in the order of Zn < Cu < Cd < Ni < Pb < Cr < Al, which is in agreement with metal sorption affinity of zeolite. Hence, sorption thermodynamics has an influence on the metal sorption affinity of zeolite. On the other hand, the primary kinetics rate-limiting step of seaweed was the sorption reaction process followed by intraparticle diffusion. The boundary layer diffusion was also found to limit the metal sorption kinetics at low concentration. According to the sorption isotherm study, Cd, Pb, Cr and Al were sorbed by seaweed via ion exchange, whilst sorption of Ni occurred via physisorption. Furthermore, ionic bonding is responsible for the sorption of Zn. The thermodynamics study confirmed that sorption by seaweed was energetically favourable in the order of Zn < Cu < Cd < Cr . Al < Pb < Ni. However, this did not agree with the affinity series derived for seaweed suggesting a limited influence of sorption thermodynamics on metal affinity for seaweed. The investigation of zeolite-seaweed mixtures indicated that mixing sorbents have an effect on the kinetics rates and the sorption affinity. Additionally, the theoretical relationships were derived to predict the boundary layer diffusion rate, intraparticle diffusion rate, the sorption reaction rate and the enthalpy of mixtures based on that of individual sorbents. In general, low coefficient of determination (R2) for the relationships between theoretical and experimental data indicated that the relationships were not statistically significant. This was attributed to the heterogeneity of the properties of sorbents. Nevertheless, in relative terms, the intraparticle diffusion rate, sorption reaction rate and enthalpy of sorption had higher R2 values than the boundary layer diffusion rate suggesting that there was some relationship between the former set of parameters of mixtures and that of sorbents. The mixture, which contained 80% of zeolite and 20% of seaweed, showed similar affinity for the sorption of Cu, Ni, Cd, Cr and Al, which was attributed to approximately similar sorption enthalpy of the metal ions. Therefore, it was concluded that the seaweed-zeolite mixture can be used to obtain the same affinity for various metals present in a multi metal system provided the metal ions have similar enthalpy during sorption by the mixture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter in a monograph covering many different transitions, focuses on the variables contributing to a successful or problematic transition from High School to a tertiary institution and is based on responses from a sample of students at a large city university who encountered difficulties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Facebook is approaching ubiquity in the social habits and practice of many students. However, its use in higher education has been criticised (Maranto & Barton, 2010) because it can remove or blur academic boundaries. Despite these concerns, there is strong potential to use Facebook to support new students to communicate and interact with each other (Cheung, Chiu, & Lee, 2010). This paper shows how Facebook can be used by teaching staff to communicate more effectively with students. Further, it shows how it can provide a way to represent and include beginning students’ thoughts, opinions and feedback as an element of the learning design and responsive feed-forward into lectures and tutorial activities. We demonstrate how an embedded social media strategy can be used to complement and enhance the first year curriculum experience by functioning as a transition device for student support and activating Kift’s (2009) organising principles for first year curriculum design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research study discussed in the paper investigated the influence of organic matter on heavy metal adsorption for different particle size ranges of build-up solids. Samples collected from road surfaces were assessed for organic matter content, mineral composition, particle size distribution and effective cation exchange capacity. It was found that the organic matter plays a key role in >75µm particles in the adsorption of Zinc, Lead, Nickel and Copper, which are generated by traffic activities. Clay forming minerals and metal oxides of Iron, Aluminium and Manganese was found to be important for heavy metal adsorption to <75µm particles. It was also found that heavy metals adsorbed to organic matter are strongly bound to particles and these metal ions will not be bio-available if the chemical quality of the media remains stable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While strengthened partnerships between University and Schools have been proposed in recent reviews of teacher education (House of Representative Standing Committee on Education and Vocational Training, 2007; Caldwell & Sutton, 2010; Donaldson, 2010), there is a need to understand the benefits and challenges for participants of these partnerships. The Teacher Education Centre of Excellence (TECE) in this study is a preservice teacher preparation partnership between a Queensland University, Queensland Department of Education, Training and Employment (DETE) and an Education Queensland school. It was established in response to a mandated reform within the Improving Teacher Quality National Partnership Agreement (Department of Education Employment and Workplace Relations, 2011). High-achieving Bachelor of Education preservice teachers apply to be part of the 18-month program in the third year of their four-year Education degree. These preservice teachers experience mentoring in partner schools in addition to course work designed and delivered by a DETE appointed Head of Mentoring and a university academic. On completion of the program, graduates will be appointed to South West Queensland rural and remote Education Queensland schools. This paper analyses participant perspectives from the first phase of this partnership in particular identifying the benefits and challenges experienced by the preservice teachers and the leaders of the program from the participating institutions. A sociocultural theoretical perspective (Wenger, 1998) informed the analysis examining how preservice teachers experience a sense of becoming a professional teacher within a specific employment context. Data from interviews with 6 pre-service teachers and 8 program leaders were analysed inductively through coding of interview records. Findings indicate the importance of strong relationships and opportunity for reciprocal learning through ongoing professional conversations as contexts for preservice teachers to develop an identity as an emerging professional. This research has significance for the ongoing development of this partnership as well as informing the principles for the design of future similar partnerships.