893 resultados para Man-Machine Systems.
Resumo:
In this paper, we presented an automatic system for precise urban road model reconstruction based on aerial images with high spatial resolution. The proposed approach consists of two steps: i) road surface detection and ii) road pavement marking extraction. In the first step, support vector machine (SVM) was utilized to classify the images into two categories: road and non-road. In the second step, road lane markings are further extracted on the generated road surface based on 2D Gabor filters. The experiments using several pan-sharpened aerial images of Brisbane, Queensland have validated the proposed method.
Resumo:
As more and more information is available on the Web finding quality and reliable information is becoming harder. To help solve this problem, Web search models need to incorporate users’ cognitive styles. This paper reports the preliminary results from a user study exploring the relationships between Web users’ searching behavior and their cognitive style. The data was collected using a questionnaire, Web search logs and think-aloud strategy. The preliminary findings reveal a number of cognitive factors, such as information searching processes, results evaluations and cognitive style, having an influence on users’ Web searching behavior. Among these factors, the cognitive style of the user was observed to have a greater impact. Based on the key findings, a conceptual model of Web searching and cognitive styles is presented.
Resumo:
The theory of nonlinear dyamic systems provides some new methods to handle complex systems. Chaos theory offers new concepts, algorithms and methods for processing, enhancing and analyzing the measured signals. In recent years, researchers are applying the concepts from this theory to bio-signal analysis. In this work, the complex dynamics of the bio-signals such as electrocardiogram (ECG) and electroencephalogram (EEG) are analyzed using the tools of nonlinear systems theory. In the modern industrialized countries every year several hundred thousands of people die due to sudden cardiac death. The Electrocardiogram (ECG) is an important biosignal representing the sum total of millions of cardiac cell depolarization potentials. It contains important insight into the state of health and nature of the disease afflicting the heart. Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart by the sympathetic and parasympathetic branches of the autonomic nervous system. Heart rate variability analysis is an important tool to observe the heart's ability to respond to normal regulatory impulses that affect its rhythm. A computerbased intelligent system for analysis of cardiac states is very useful in diagnostics and disease management. Like many bio-signals, HRV signals are non-linear in nature. Higher order spectral analysis (HOS) is known to be a good tool for the analysis of non-linear systems and provides good noise immunity. In this work, we studied the HOS of the HRV signals of normal heartbeat and four classes of arrhythmia. This thesis presents some general characteristics for each of these classes of HRV signals in the bispectrum and bicoherence plots. Several features were extracted from the HOS and subjected an Analysis of Variance (ANOVA) test. The results are very promising for cardiac arrhythmia classification with a number of features yielding a p-value < 0.02 in the ANOVA test. An automated intelligent system for the identification of cardiac health is very useful in healthcare technology. In this work, seven features were extracted from the heart rate signals using HOS and fed to a support vector machine (SVM) for classification. The performance evaluation protocol in this thesis uses 330 subjects consisting of five different kinds of cardiac disease conditions. The classifier achieved a sensitivity of 90% and a specificity of 89%. This system is ready to run on larger data sets. In EEG analysis, the search for hidden information for identification of seizures has a long history. Epilepsy is a pathological condition characterized by spontaneous and unforeseeable occurrence of seizures, during which the perception or behavior of patients is disturbed. An automatic early detection of the seizure onsets would help the patients and observers to take appropriate precautions. Various methods have been proposed to predict the onset of seizures based on EEG recordings. The use of nonlinear features motivated by the higher order spectra (HOS) has been reported to be a promising approach to differentiate between normal, background (pre-ictal) and epileptic EEG signals. In this work, these features are used to train both a Gaussian mixture model (GMM) classifier and a Support Vector Machine (SVM) classifier. Results show that the classifiers were able to achieve 93.11% and 92.67% classification accuracy, respectively, with selected HOS based features. About 2 hours of EEG recordings from 10 patients were used in this study. This thesis introduces unique bispectrum and bicoherence plots for various cardiac conditions and for normal, background and epileptic EEG signals. These plots reveal distinct patterns. The patterns are useful for visual interpretation by those without a deep understanding of spectral analysis such as medical practitioners. It includes original contributions in extracting features from HRV and EEG signals using HOS and entropy, in analyzing the statistical properties of such features on real data and in automated classification using these features with GMM and SVM classifiers.
Resumo:
The use of appropriate features to characterize an output class or object is critical for all classification problems. This paper evaluates the capability of several spectral and texture features for object-based vegetation classification at the species level using airborne high resolution multispectral imagery. Image-objects as the basic classification unit were generated through image segmentation. Statistical moments extracted from original spectral bands and vegetation index image are used as feature descriptors for image objects (i.e. tree crowns). Several state-of-art texture descriptors such as Gray-Level Co-Occurrence Matrix (GLCM), Local Binary Patterns (LBP) and its extensions are also extracted for comparison purpose. Support Vector Machine (SVM) is employed for classification in the object-feature space. The experimental results showed that incorporating spectral vegetation indices can improve the classification accuracy and obtained better results than in original spectral bands, and using moments of Ratio Vegetation Index obtained the highest average classification accuracy in our experiment. The experiments also indicate that the spectral moment features also outperform or can at least compare with the state-of-art texture descriptors in terms of classification accuracy.
Resumo:
This paper treats the seismic mitigation of medium rise frame-shear wall structures and building facade systems using passive damping devices. The frame shear wall structures have embedded viscoelastic and friction dampers in different configurations and placed in various locations in the structure. Influence of damper type, configuration and location are investigated. Results for tip deflections which provide an overall evaluation of the seismic response of the structure, are determined. Seismic mitigation of building facade systems in which visco-elastic dampers are fitted at the horizontal connections between the facades and the frame, instead of the traditional rigid connections, are also treated. Finite element techniques are used to model and analyse the two structural systems under different earthquake loadings, scaled to the same peak ground acceleration for meaningful comparison of responses. Results demonstrate the feasibility of these techniques for seismic mitigation.
Resumo:
In a digital world, users’ Personally Identifiable Information (PII) is normally managed with a system called an Identity Management System (IMS). There are many types of IMSs. There are situations when two or more IMSs need to communicate with each other (such as when a service provider needs to obtain some identity information about a user from a trusted identity provider). There could be interoperability issues when communicating parties use different types of IMS. To facilitate interoperability between different IMSs, an Identity Meta System (IMetS) is normally used. An IMetS can, at least theoretically, join various types of IMSs to make them interoperable and give users the illusion that they are interacting with just one IMS. However, due to the complexity of an IMS, attempting to join various types of IMSs is a technically challenging task, let alone assessing how well an IMetS manages to integrate these IMSs. The first contribution of this thesis is the development of a generic IMS model called the Layered Identity Infrastructure Model (LIIM). Using this model, we develop a set of properties that an ideal IMetS should provide. This idealized form is then used as a benchmark to evaluate existing IMetSs. Different types of IMS provide varying levels of privacy protection support. Unfortunately, as observed by Jøsang et al (2007), there is insufficient privacy protection in many of the existing IMSs. In this thesis, we study and extend a type of privacy enhancing technology known as an Anonymous Credential System (ACS). In particular, we extend the ACS which is built on the cryptographic primitives proposed by Camenisch, Lysyanskaya, and Shoup. We call this system the Camenisch, Lysyanskaya, Shoup - Anonymous Credential System (CLS-ACS). The goal of CLS-ACS is to let users be as anonymous as possible. Unfortunately, CLS-ACS has problems, including (1) the concentration of power to a single entity - known as the Anonymity Revocation Manager (ARM) - who, if malicious, can trivially reveal a user’s PII (resulting in an illegal revocation of the user’s anonymity), and (2) poor performance due to the resource-intensive cryptographic operations required. The second and third contributions of this thesis are the proposal of two protocols that reduce the trust dependencies on the ARM during users’ anonymity revocation. Both protocols distribute trust from the ARM to a set of n referees (n > 1), resulting in a significant reduction of the probability of an anonymity revocation being performed illegally. The first protocol, called the User Centric Anonymity Revocation Protocol (UCARP), allows a user’s anonymity to be revoked in a user-centric manner (that is, the user is aware that his/her anonymity is about to be revoked). The second protocol, called the Anonymity Revocation Protocol with Re-encryption (ARPR), allows a user’s anonymity to be revoked by a service provider in an accountable manner (that is, there is a clear mechanism to determine which entity who can eventually learn - and possibly misuse - the identity of the user). The fourth contribution of this thesis is the proposal of a protocol called the Private Information Escrow bound to Multiple Conditions Protocol (PIEMCP). This protocol is designed to address the performance issue of CLS-ACS by applying the CLS-ACS in a federated single sign-on (FSSO) environment. Our analysis shows that PIEMCP can both reduce the amount of expensive modular exponentiation operations required and lower the risk of illegal revocation of users’ anonymity. Finally, the protocols proposed in this thesis are complex and need to be formally evaluated to ensure that their required security properties are satisfied. In this thesis, we use Coloured Petri nets (CPNs) and its corresponding state space analysis techniques. All of the protocols proposed in this thesis have been formally modeled and verified using these formal techniques. Therefore, the fifth contribution of this thesis is a demonstration of the applicability of CPN and its corresponding analysis techniques in modeling and verifying privacy enhancing protocols. To our knowledge, this is the first time that CPN has been comprehensively applied to model and verify privacy enhancing protocols. From our experience, we also propose several CPN modeling approaches, including complex cryptographic primitives (such as zero-knowledge proof protocol) modeling, attack parameterization, and others. The proposed approaches can be applied to other security protocols, not just privacy enhancing protocols.
Resumo:
Introduction Among the many requirements of establishing community health, a healthy urban environment stands out as significant one. A healthy urban environment constantly changes and improves community well-being and expands community resources. The promotion efforts for such an environment, therefore, must include the creation of structures and processes that actively work to dismantle existing community inequalities. In general, these processes are hard to manage; therefore, they require reliable planning and decision support systems. Current and previous practices justify that the use of decision support systems in planning for healthy communities have significant impacts on the communities. These impacts include but are not limited to: increasing collaboration between stakeholders and the general public; improving the accuracy and quality of the decision making process; enhancing healthcare services; and improving data and information availability for health decision makers and service planners. Considering the above stated reasons, this study investigates the challenges and opportunities of planning for healthy communities with the specific aim of examining the effectiveness of participatory planning and decision systems in supporting the planning for such communities. Methods This study introduces a recently developed methodology, which is based on an online participatory decision support system. This new decision support system contributes to solve environmental and community health problems, and to plan for healthy communities. The system also provides a powerful and effective platform for stakeholders and interested members of the community to establish an empowered society and a transparent and participatory decision making environment. Results The paper discusses the preliminary findings from the literature review of this decision support system in a case study of Logan City, Queensland. Conclusion The paper concludes with future research directions and applicability of this decision support system in health service planning elsewhere.
Resumo:
This paper investigates the current turbulent state of copyright in the digital age, and explores the viability of alternative compensation systems that aim to achieve the same goals with fewer negative consequences for consumers and artists. To sustain existing business models associated with creative content, increased recourse to DRM (Digital Rights Management) technologies, designed to restrict access to and usage of digital content, is well underway. Considerable technical challenges associated with DRM systems necessitate increasingly aggressive recourse to the law. A number of controversial aspects of copyright enforcement are discussed and contrasted with those inherent in levy based compensation systems. Lateral exploration of the copyright dilemma may help prevent some undesirable societal impacts, but with powerful coalitions of creative, consumer electronics and information technology industries having enormous vested interest in current models, alternative schemes are frequently treated dismissively. This paper focuses on consideration of alternative models that better suit the digital era whilst achieving a more even balance in the copyright bargain.
Resumo:
This paper presents the results of a pilot study examining the factors that impact most on the effective implementation of, and improvement to, Quality Mangement Sytems (QMSs) amongst Indonesian construction companies. Nine critical factors were identified from an extensive literature review, and a survey was conducted of 23 respondents from three specific groups (Quality Managers, Project Managers, and Site Engineers) undertaking work in the Indonesian infrastructure construction sector. The data has been analyzed initially using simple descriptive techniques. This study reveals that different groups within the sector have different opinions of the factors regardless of the degree of importance of each factor. However, the evaluation of construction project success and the incentive schemes for high performance staff, are the two factors that were considered very important by most of the respondents in all three groups. In terms of their assessment of tools for measuring contractor’s performance, additional QMS guidelines, techniques related to QMS practice provided by the Government, and benchmarking, a clear majority in each group regarded their usefulness as ‘of some importance’.
Resumo:
In recent years several scientific Workflow Management Systems (WfMSs) have been developed with the aim to automate large scale scientific experiments. As yet, many offerings have been developed, but none of them has been promoted as an accepted standard. In this paper we propose a pattern-based evaluation of three among the most widely used scientific WfMSs: Kepler, Taverna and Triana. The aim is to compare them with traditional business WfMSs, emphasizing the strengths and deficiencies of both systems. Moreover, a set of new patterns is defined from the analysis of the three considered systems.
Resumo:
This paper presents a systems-level approach for adjudicating the prioritization, selection, and planning of inservcie professional development (PD) for teachers. We present a step-by-step model for documenting and assessing system-wide 'bids' for professional development programs
Resumo:
Mechanical control systems have become a part of our everyday life. Systems such as automobiles, robot manipulators, mobile robots, satellites, buildings with active vibration controllers and air conditioning systems, make life easier and safer, as well as help us explore the world we live in and exploit it’s available resources. In this chapter, we examine a specific example of a mechanical control system; the Autonomous Underwater Vehicle (AUV). Our contribution to the advancement of AUV research is in the area of guidance and control. We present innovative techniques to design and implement control strategies that consider the optimization of time and/or energy consumption. Recent advances in robotics, control theory, portable energy sources and automation increase our ability to create more intelligent robots, and allows us to conduct more explorations by use of autonomous vehicles. This facilitates access to higher risk areas, longer time underwater, and more efficient exploration as compared to human occupied vehicles. The use of underwater vehicles is expanding in every area of ocean science. Such vehicles are used by oceanographers, archaeologists, geologists, ocean engineers, and many others. These vehicles are designed to be agile, versatile and robust, and thus, their usage has gone from novelty to necessity for any ocean expedition.
Resumo:
-
Resumo:
Recommender systems are widely used online to help users find other products, items etc that they may be interested in based on what is known about that user in their profile. Often however user profiles may be short on information and thus it is difficult for a recommender system to make quality recommendations. This problem is known as the cold-start problem. Here we investigate using association rules as a source of information to expand a user profile and thus avoid this problem. Our experiments show that it is possible to use association rules to noticeably improve the performance of a recommender system under the cold-start situation. Furthermore, we also show that the improvement in performance obtained can be achieved while using non-redundant rule sets. This shows that non-redundant rules do not cause a loss of information and are just as informative as a set of association rules that contain redundancy.
Resumo:
This paper presents Multi-Step A* (MSA*), a search algorithm based on A* for multi-objective 4D vehicle motion planning (three spatial and one time dimension). The research is principally motivated by the need for offline and online motion planning for autonomous Unmanned Aerial Vehicles (UAVs). For UAVs operating in large, dynamic and uncertain 4D environments, the motion plan consists of a sequence of connected linear tracks (or trajectory segments). The track angle and velocity are important parameters that are often restricted by assumptions and grid geometry in conventional motion planners. Many existing planners also fail to incorporate multiple decision criteria and constraints such as wind, fuel, dynamic obstacles and the rules of the air. It is shown that MSA* finds a cost optimal solution using variable length, angle and velocity trajectory segments. These segments are approximated with a grid based cell sequence that provides an inherent tolerance to uncertainty. Computational efficiency is achieved by using variable successor operators to create a multi-resolution, memory efficient lattice sampling structure. Simulation studies on the UAV flight planning problem show that MSA* meets the time constraints of online replanning and finds paths of equivalent cost but in a quarter of the time (on average) of vector neighbourhood based A*.