972 resultados para MAGNETOHYDRODYNAMIC TURBULENCE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studying the transition from a linearly stable coherent laminar state to a highly disordered state of turbulence is conceptually and technically challenging, and of great interest because all pipe and channel flows are of that type. In optics, understanding how a system loses coherence, as spatial size or the strength of excitation increases, is a fundamental problem of practical importance. Here, we report our studies of a fibre laser that operates in both laminar and turbulent regimes. We show that the laminar phase is analogous to a one-dimensional coherent condensate and the onset of turbulence is due to the loss of spatial coherence. Our investigations suggest that the laminar-turbulent transition in the laser is due to condensate destruction by clustering dark and grey solitons. This finding could prove valuable for the design of coherent optical devices as well as systems operating far from thermodynamic equilibrium. © 2013 Macmillan Publishers Limited.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemical turbulence in the oscillatory catalytic CO oxidation on Pt(110) is suppressed by means of focused laser light. The laser locally heats the platinum surface which leads to a local increase of the oscillation frequency, and to the formation of a pacemaker which emits target waves. These waves slowly entrain the medium and suppress the spatiotemporal chaos present in the absence of laser light. Our experimental results are confirmed by a detailed numerical analysis of one- and two-dimensional media using the Krischer-Eiswirth-Ertl model for CO oxidation on Pt110. Different control regimes are identified and the dispersion relation of the system is determined using the pacemaker as an externally tunable wave source.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Links the concept of market-driven business strategies with the design of production systems. It draws upon the case of a firm which, during the last decade, changed its strategy from being “technology led” to “market driven”. The research, based on interdisciplinary fieldwork involving long-term participant observation, investigated the factors which contribute to the successful design and implementation of flexible production systems in electronics assembly. These investigations were conducted in collaboration with a major computer manufacturer, with other electronics firms being studied for comparison. The research identified a number of strategies and actions seen as crucial to the development of efficient flexible production systems, namely: effective integration of subsystems, development of appropriate controls and performance measures, compatibility between production system design and organization structure, and the development of a climate conducive to organizational change. Overall, the analysis suggests that in the electronics industry there exists an extremely high degree of environmental complexity and turbulence. This serves to shape the strategic, technical and social structures that are developed to match this complexity, examples of which are niche marketing, flexible manufacturing and employee harmonization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An outline of the state space of planar Couette flow at high Reynolds numbers (Re<105) is investigated via a variety of efficient numerical techniques. It is verified from nonlinear analysis that the lower branch of the hairpin vortex state (HVS) asymptotically approaches the primary (laminar) state with increasing Re. It is also predicted that the lower branch of the HVS at high Re belongs to the stability boundary that initiates a transition to turbulence, and that one of the unstable manifolds of the lower branch of HVS lies on the boundary. These facts suggest HVS may provide a criterion to estimate a minimum perturbation arising transition to turbulent states at the infinite Re limit. © 2013 American Physical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The origin of linear instability resulting in rotating sheared accretion flows has remained a controversial subject for a long time. While some explanations of such non-normal transient growth of disturbances in the Rayleigh stable limit were available for magnetized accretion flows, similar instabilities in the absence of magnetic perturbations remained unexplained. This dichotomy was resolved in two recent publications by Chattopadhyay and co-workers [Mukhopadhyay and Chattopadhyay, J. Phys. A 46, 035501 (2013)1751-811310.1088/1751-8113/46/3/035501; Nath, Phys. Rev. E 88, 013010 (2013)PLEEE81539-375510.1103/PhysRevE.88.013010] where it was shown that such instabilities, especially for nonmagnetized accretion flows, were introduced through interaction of the inherent stochastic noise in the system (even a "cold" accretion flow at 3000 K is too "hot" in the statistical parlance and is capable of inducing strong thermal modes) with the underlying Taylor-Couette flow profiles. Both studies, however, excluded the additional energy influx (or efflux) that could result from nonzero cross correlation of a noise perturbing the velocity flow, say, with the noise that is driving the vorticity flow (or equivalently the magnetic field and magnetic vorticity flow dynamics). Through the introduction of such a time symmetry violating effect, in this article we show that nonzero noise cross correlations essentially renormalize the strength of temporal correlations. Apart from an overall boost in the energy rate (both for spatial and temporal correlations, and hence in the ensemble averaged energy spectra), this results in mutual competition in growth rates of affected variables often resulting in suppression of oscillating Alfven waves at small times while leading to faster saturations at relatively longer time scales. The effects are seen to be more pronounced with magnetic field fluxes where the noise cross correlation magnifies the strength of the field concerned. Another remarkable feature noted specifically for the autocorrelation functions is the removal of energy degeneracy in the temporal profiles of fast growing non-normal modes leading to faster saturation with minimum oscillations. These results, including those presented in the previous two publications, now convincingly explain subcritical transition to turbulence in the linear limit for all possible situations that could now serve as the benchmark for nonlinear stability studies in Keplerian accretion disks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using the analogy between lateral convection of heat and the two-phase flow in bubble columns, alternative turbulence modelling methods were analysed. The k-ε turbulence and Reynolds stress models were used to predict the buoyant motion of fluids where a density difference arises due to the introduction of heat or a discrete phase. A large height to width aspect ratio cavity was employed in the transport of heat and it was shown that the Reynolds stress model with the use of velocity profiles including the laminar flow solution resulted in turbulent vortices developing. The turbulence models were then applied to the simulation of gas-liquid flow for a 5:1 height to width aspect ratio bubble column. In the case of a gas superficial velocity of 0.02 m s-1 it was determined that employing the Reynolds stress model yielded the most realistic simulation results. © 2003 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Women remain in a small minority as business leaders in both Middle Eastern (ME) and Western European (WE) regions, and indeed, past research indicates that ME women face even greater challenges as leaders than their Western counterparts. This article explores sample findings from two separate case studies, the first of a ME woman leader and the second of a WE woman leader, each conducting a management meeting with their teams. Using interactional sociolinguistic analysis, we examine the 'contextualisation cues' that index how each woman performs leadership in their respective meetings. We found that both women utilise relational practices in order to enact leadership with their subordinates, but with varying results. Whereas the ME leader deploys a confident and commanding interactional style with her colleagues, the WE leader's style is evasive and uncertain. On the basis of these two cases, the WE leader appears to face greater challenges in a male-dominated business world than the ME leader. Whereas the ME leader can rely on long-established ties of loyalty and organisation-as-family, the Western leader, within an apparently more open, democratic context, has to negotiate overwhelming turbulence and change within her company. © 2014, equinox publishing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study how the spatial distribution of inertial particles evolves with time in a random flow. We describe an explosive appearance of caustics and show how they influence an exponential growth of clusters due to smooth parts of the flow, leading in particular to an exponential growth of the average distance between particles. We demonstrate how caustics restrict applicability of Lagrangian description to inertial particles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Agitating liquids in unbaffled stirred tank leads to the formation of a vortex in the region of the impeller shaft when operating in the turbulent flow regime. A numerical model is presented here that captures such a vortex. The volume of fluid model, a multiphase flow model was employed in conjunction with a multiple reference frame model and the shear stress turbulence model. The dimensions of the tank considered here, were 0.585 m for the liquid depth and tank diameter with a 0.2925 m diameter impeller at a height of 0.2925 m. The impeller considered was an eight-bladed paddle type agitator that was rotating with an angular velocity of 7.54 rad s (72 rpm) giving a Reynolds number of 10 and Froude number of 0.043. Preliminary results of a second investigation into the effect of liquid phase properties on the vortex formed are also presented. © 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Whey proteins may be fractionated by isoelectric precipitation followed by centrifugal recovery of the precipitate phase. Transport and processing of protein precipitates may alter the precipitate particle properties, which may affect how they behave in subsequent processes. For example, the transport of precipitate solution through pumps, pipes and valves and into a centrifugal separator may cause changes in particle size and density, which may affect the performance of the separator. This work investigates the effect of fluid flow intensity, flow geometry and exposure time on the breakage of whey protein precipitates: Computational fluid dynamics (CFD) was used to quantify the flow intensity in different geometries. Flow geometry can have a critical impact on particle breakage. Sharp geometrical transitions induce large increases in turbulence that can result in substantial particle breakage. As protein precipitate particles break, they tend to form denser more compact structures. The reduction in particle size and increase in compaction is due to breakage. This makes the particles become more resistant to further breakage as particle compactness increases. The effect of flow intensity on particle breakage is coupled to exposure time, with greater exposure time producing more breakage. However, it is expected that the particles will attain an equilibrium particle size and density after prolonged exposure in a constant flow field where no further breakage will occur with exposure time. © 2005 Institution of Chemical Engineers.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the simplest ways to create nonlinear oscillations is the Hopf bifurcation. The spatiotemporal dynamics observed in an extended medium with diffusion (e.g., a chemical reaction) undergoing this bifurcation is governed by the complex Ginzburg-Landau equation, one of the best-studied generic models for pattern formation, where besides uniform oscillations, spiral waves, coherent structures and turbulence are found. The presence of time delay terms in this equation changes the pattern formation scenario, and different kind of travelling waves have been reported. In particular, we study the complex Ginzburg-Landau equation that contains local and global time-delay feedback terms. We focus our attention on plane wave solutions in this model. The first novel result is the derivation of the plane wave solution in the presence of time-delay feedback with global and local contributions. The second and more important result of this study consists of a linear stability analysis of plane waves in that model. Evaluation of the eigenvalue equation does not show stabilisation of plane waves for the parameters studied. We discuss these results and compare to results of other models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present results on characterization of lasers with ultra-long cavity lengths up to 84km, the longest cavity ever reported. We have analyzed the mode structure, shape and width of the generated spectra, intensity fluctuations depending on length and intra-cavity power. The RF spectra exhibit an ultra-dense cavity mode structure (mode spacing is 1.2kHz for 84km), in which the width of the mode beating is proportional to the intra-cavity power while the optical spectra broaden with power according to the square-root law acquiring a specific shape with exponential wings. A model based on wave turbulence formalism has been developed to describe the observed effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main focus of this paper is on mathematical theory and methods which have a direct bearing on problems involving multiscale phenomena. Modern technology is refining measurement and data collection to spatio-temporal scales on which observed geophysical phenomena are displayed as intrinsically highly variable and intermittant heirarchical structures,e.g. rainfall, turbulence, etc. The heirarchical structure is reflected in the occurence of a natural separation of scales which collectively manifest at some basic unit scale. Thus proper data analysis and inference require a mathematical framework which couples the variability over multiple decades of scale in which basic theoretical benchmarks can be identified and calculated. This continues the main theme of the research in this area of applied probability over the past twenty years.