918 resultados para Light-scattering
Resumo:
A study was conducted on the dynamics of 2D and 3D Bose-Einstein condensates in the case when the scattering length in the Gross-Pitaevskii (GP) equation which contains constant (dc) and time-variable (ac) parts. Using the variational approximation (VA), simulating the GP equation directly, and applying the averaging procedure to the GP equation without the use of the VA, it was demonstrated that the ac component of the nonlinearity makes it possible to maintain the condensate in a stable self-confined state without external traps.
Resumo:
The scattering of charmed mesons on nucleons is investigated within a chiral quark model inspired on the QCD Hamiltonian in Coulomb gauge. The microscopic model incorporates a longitudinal Coulomb confining interaction derived from a self-consistent quasi-particle approximation to the QCD vacuum, and a traverse hyperfine interaction motivated from lattice simulations of QCD in Coulomb gauge. From the microscopic interactions at the quark level, effective meson-baryon interactions are derived using a mapping formalism that leads to quark-Born diagrams. As an application, the total cross-section of heavy-light D-mesons scattering on nucleons is estimated.
Resumo:
Results are presented on a search for a light charged Higgs boson that can be produced in the decay of the top quark t → H +b and which, in turn, decays into τ +ν t. The analysed data correspond to an integrated luminosity of about 2 fb -1 recorded in protonproton collisions at √s = 7 TeV by the CMS experiment at the LHC. The search is sensitive to the decays of the top quark pairs tt̄ → H ±W ∓bb̄ and tt̄ → H ±H ∓bb̄. Various final states have been studied separately, all requiring presence of a τ lepton from H + decays, missing transverse energy, and multiple jets. Upper limits on the branching fraction B(t → H +b) in the range of 2-4% are established for charged Higgs boson masses between 80 and 160 GeV, under the assumption that B(H + → τ +ν τ) = 1.
Resumo:
The inelastic scattering of light, Raman scattering, presents a very low cross section. However, the signal can be amplified by several orders of magnitude, leading to the so-called surface-enhanced Raman scattering (SERS) phenomenon. Basically, the SERS effect is achieved when the target molecule (analyte) is adsorbed onto metallic nanoparticles, usually noble metals. This article presents an overview of the applications of SERS to cancer diagnosis and the detection of pesticides, explosives, and drugs (illicit and pharmacological). SERS is routinely applied nowadays to detect and identify analytes at very low concentrations, including for single-molecule detection. However, the application of SERS as an analytical tool requires reliable and reproducible SERS substrates, in terms of enhancement factors, which depends on the size, shape, and aggregation of the metallic nanoparticles. Therefore, the production of reliable and reproducible SERS substrates is a challenge in the field. Besides, the metallic nanoparticles can also induce changes in the system by possible interactions with the analyte under investigation, which must be taken into account. This review will present work in which, under certain specific experimental conditions, SERS has been analytically applied.
Resumo:
Doping tin dioxide (SnO2) with pentavalent Sb5+ ions leads to an enhancement in the electrical conductivity of this material, because Sb5+ substitutes Sn4+ in the matrix, promoting an electronic density increase in the conduction band, due to the donor-like nature of the doping atom. Results of computational simulation, based on the Density Functional Theory (DFT), of SnO2:4%Sb and SnO2:8%Sb show that the bandgap magnitude is strongly affected by the doping concentration, because the energy value found for 4 at%Sb and 8 at%Sb was 3.27 eV and 3.13 eV, respectively, whereas the well known value for undoped SnO2 is about 3.6 eV. Sb-doped SnO2 thin films were obtained by the sol-gel-dip-coating technique. The samples were submitted to excitation with below theoretical bandgap light (450 nm), as well as above bandgap light (266 nm) at low temperature, and a temperature-dependent increase in the conductivity is observed. Besides, an unusual temperature and time dependent decay when the illumination is removed is also observed, where the decay time is slower for higher temperatures. This decay is modeled by considering thermally activated cross section of trapping centers, and the hypothesis of grain boundary scattering as the dominant mechanism for electronic mobility. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Among the three forms of relativistic Hamiltonian dynamics proposed by Dirac in 1949, the front form has the largest number of kinematic generators. This distinction provides useful consequences in the analysis of physical observables in hadron physics. Using the method of interpolation between the instant form and the front form, we introduce the interpolating scattering amplitude that links the corresponding time-ordered amplitudes between the two forms of dynamics and provide the physical meaning of the kinematic transformations as they allow the invariance of each individual time-ordered amplitude for an arbitrary interpolation angle. We discuss the rationale for using front form dynamics, nowadays known as light-front dynamics (LFD), and present a few explicit examples of hadron phenomenology that LFD uniquely can offer from first-principles quantum chromodynamics. In particular, model-independent constraints are provided for the analyses of deuteron form factors and the N Delta transition form factors at large momentum transfer squared Q(2). The swap of helicity amplitudes between the collinear and non-collinear kinematics is also discussed in deeply virtual Compton scattering.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The synergistic effect produced by metallic nanoparticles when incorporated into different systems empowers a research field that is growing rapidly. In addition, organometallic materials are at the center of intensive research with diverse applications such as light-emitting devices, transistors, solar cells, and sensors. The Langmuir-Blodgett (LB) technique has proven to be suitable to address challenges inherent to organic devices, since the film properties can be tuned at the molecular level. Here we report a strategy to incorporate gold nanoparticles (AuNPs) into the LB film by co-deposition in order to achieve surface-enhanced Raman scattering (SERS) of the zinc(II)-protoporphyrin (IX) dimethyl ester (ZnPPIX-DME). Prior to the LB co-deposition, the properties of the Langmuir monolayer of ZnPPIX-DME at the air-water interface, containing AuNPs in the subphase, are studied through the surface-pressure versus mean molecular area (π-A) isotherms. The ZnPPIX-DME+AuNPs π-A isotherm presented a significant shift to higher molecular area, suggesting an interaction between both ZnPPIX-DME molecules and AuNPs. Those interactions are a key factor allowing the co-deposition of both AuNPs and ZnPPIX-DME molecules onto a solid substrate, thus forming the LB film. SERS of ZnPPIX-DME was successfully attained, ensuring the spatial distribution of the AuNPs. Higher enhancement factors were found at AuNP aggregates, as a result of the intense local electromagnetic field found in the metal nanoparticle aggregates. The main vibrational bands observed in the SERS spectra suggest a physical adsorption of the ZnPPIX-DME onto the surface of AuNPs. The latter is not only in agreement with the interactions pointed out by the π-A isotherms but also suggests that this interaction is kept upon LB film co-deposition.
Resumo:
[EN] The submarine volcano eruption off El Hierro Island (Canary Islands) on 10 October 2011 promoted dramatic perturbation of the water column leading to changes in the distribution of pelagic fauna. To study the response of the scattering biota, we combined acoustic data with hydrographic profiles and concurrent sea surface turbidity indexes from satellite imagery. We also monitored changes in the plankton and nekton communities through the eruptive and post-eruptive phases. Decrease of oxygen, acidification, rising temperature and deposition of chemicals in shallow waters resulted in a reduction of epipelagic stocks and a disruption of diel vertical migration (nocturnal ascent) of mesopelagic organisms. Furthermore, decreased light levels at depth caused by extinction in the volcanic plume resulted in a significant shallowing of the deep acoustic scattering layer. Once the eruption ceased, the distribution and abundances of the pelagic biota returned to baseline levels. There was no evidence of a volcano-induced bloom in the plankton community.
Resumo:
In dieser Arbeit aus dem Bereich der Wenig-Nukleonen-Physik wird die neu entwickelte Methode der Lorentz Integral Transformation (LIT) auf die Untersuchung von Kernphotoabsorption und Elektronenstreuung an leichten Kernen angewendet. Die LIT-Methode ermoeglicht exakte Rechnungen durchzufuehren, ohne explizite Bestimmung der Endzustaende im Kontinuum. Das Problem wird auf die Loesung einer bindungzustandsaehnlichen Gleichung reduziert, bei der die Endzustandswechselwirkung vollstaendig beruecksichtigt wird. Die Loesung der LIT-Gleichung wird mit Hilfe einer Entwicklung nach hypersphaerischen harmonischen Funktionen durchgefuehrt, deren Konvergenz durch Anwendung einer effektiven Wechselwirkung im Rahmem des hypersphaerischen Formalismus (EIHH) beschleunigt wird. In dieser Arbeit wird die erste mikroskopische Berechnung des totalen Wirkungsquerschnittes fuer Photoabsorption unterhalb der Pionproduktionsschwelle an 6Li, 6He und 7Li vorgestellt. Die Rechnungen werden mit zentralen semirealistischen NN-Wechselwirkungen durchgefuehrt, die die Tensor Kraft teilweise simulieren, da die Bindungsenergien von Deuteron und von Drei-Teilchen-Kernen richtig reproduziert werden. Der Wirkungsquerschnitt fur Photoabsorption an 6Li zeigt nur eine Dipol-Riesenresonanz, waehrend 6He zwei unterschiedliche Piks aufweist, die dem Aufbruch vom Halo und vom Alpha-Core entsprechen. Der Vergleich mit experimentellen Daten zeigt, dass die Addition einer P-Wellen-Wechselwirkung die Uebereinstimmung wesentlich verbessert. Bei 7Li wird nur eine Dipol-Riesenresonanz gefunden, die gut mit den verfuegbaren experimentellen Daten uebereinstimmt. Bezueglich der Elektronenstreuung wird die Berechnung der longitudinalen und transversalen Antwortfunktionen von 4He im quasi-elastischen Bereich fuer mittlere Werte des Impulsuebertrages dargestellt. Fuer die Ladungs- und Stromoperatoren wird ein nichtrelativistisches Modell verwendet. Die Rechnungen sind mit semirealistischen Wechselwirkungen durchgefuert und ein eichinvarianter Strom wird durch die Einfuehrung eines Mesonaustauschstroms gewonnen. Die Wirkung des Zweiteilchenstroms auf die transversalen Antwortfunktionen wird untersucht. Vorlaeufige Ergebnisse werden gezeigt und mit den verfuegbaren experimentellen Daten verglichen.
Resumo:
This thesis is mainly concerned with a model calculation for generalized parton distributions (GPDs). We calculate vectorial- and axial GPDs for the N N and N Delta transition in the framework of a light front quark model. This requires the elaboration of a connection between transition amplitudes and GPDs. We provide the first quark model calculations for N Delta GPDs. The examination of transition amplitudes leads to various model independent consistency relations. These relations are not exactly obeyed by our model calculation since the use of the impulse approximation in the light front quark model leads to a violation of Poincare covariance. We explore the impact of this covariance breaking on the GPDs and form factors which we determine in our model calculation and find large effects. The reference frame dependence of our results which originates from the breaking of Poincare covariance can be eliminated by introducing spurious covariants. We extend this formalism in order to obtain frame independent results from our transition amplitudes.
Resumo:
A main field in biomedical optics research is diffuse optical tomography, where intensity variations of the transmitted light traversing through tissue are detected. Mathematical models and reconstruction algorithms based on finite element methods and Monte Carlo simulations describe the light transport inside the tissue and determine differences in absorption and scattering coefficients. Precise knowledge of the sample's surface shape and orientation is required to provide boundary conditions for these techniques. We propose an integrated method based on structured light three-dimensional (3-D) scanning that provides detailed surface information of the object, which is usable for volume mesh creation and allows the normalization of the intensity dispersion between surface and camera. The experimental setup is complemented by polarization difference imaging to avoid overlaying byproducts caused by inter-reflections and multiple scattering in semitransparent tissue.
Resumo:
In the framework of the MSSM, we examine several simplified models where only a few superpartners are light. This allows us to study WIMP-nucleus scattering in terms of a handful of MSSM parameters and thereby scrutinize their impact on dark matter direct-detection experiments. Focusing on spin-independent WIMP-nucleon scattering, we derive simplified, analytic expressions for the Wilson coefficients associated with Higgs and squark exchange. We utilize these results to study the complementarity of constraints due to direct-detection, flavor, and collider experiments. We also identify parameter configurations that produce (almost) vanishing cross sections. In the proximity of these so-called blind spots, we find that the amount of isospin violation may be much larger than typically expected in the MSSM. This feature is a generic property of parameter regions where cross sections are suppressed, and highlights the importance of a careful analysis of the nucleon matrix elements and the associated hadronic uncertainties. This becomes especially relevant once the increased sensitivity of future direct-detection experiments corners the MSSM into these regions of parameter space.