993 resultados para Inverse Problem


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pressing global environmental problems highlight the need to develop tools to measure progress towards "sustainability." However, some argue that any such attempt inevitably reflects the views of those creating such tools and only produce highly contested notions of "reality." To explore this tension, we critically assesses the Environmental Sustainability Index (ESI), a well-publicized product of the World Economic Forum that is designed to measure 'sustainability' by ranking nations on league tables based on extensive databases of environmental indicators. By recreating this index, and then using statistical tools (principal components analysis) to test relations between various components of the index, we challenge ways in which countries are ranked in the ESI. Based on this analysis, we suggest (1) that the approach taken to aggregate, interpret and present the ESI creates a misleading impression that Western countries are more sustainable than the developing world; (2) that unaccounted methodological biases allowed the authors of the ESI to over-generalize the relative 'sustainability' of different countries; and, (3) that this has resulted in simplistic conclusions on the relation between economic growth and environmental sustainability. This criticism should not be interpreted as a call for the abandonment of efforts to create standardized comparable data. Instead, this paper proposes that indicator selection and data collection should draw on a range of voices, including local stakeholders as well as international experts. We also propose that aggregating data into final league ranking tables is too prone to error and creates the illusion of absolute and categorical interpretations. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we show inverse fMRI activation patterns in amygdala and medial prefrontal cortex (mPFC) depending upon whether subjects interpreted surprised facial expressions positively or negatively. More negative interpretations of surprised faces were associated with greater signal changes in the right ventral amygdala, while more positive interpretations were associated with greater signal changes in the ventral mPFC. Accordingly, signal change within these two areas was inversely correlated. Thus, individual differences in the judgment of surprised faces are related to a systematic inverse relationship between amygdala and mPFC activity, a circuitry that the animal literature suggests is critical to the assessment of stimuli that predict potential positive vs negative outcomes.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The “butterfly effect” is a popularly known paradigm; commonly it is said that when a butterfly flaps its wings in Brazil, it may cause a tornado in Texas. This essentially describes how weather forecasts can be extremely senstive to small changes in the given atmospheric data, or initial conditions, used in computer model simulations. In 1961 Edward Lorenz found, when running a weather model, that small changes in the initial conditions given to the model can, over time, lead to entriely different forecasts (Lorenz, 1963). This discovery highlights one of the major challenges in modern weather forecasting; that is to provide the computer model with the most accurately specified initial conditions possible. A process known as data assimilation seeks to minimize the errors in the given initial conditions and was, in 1911, described by Bjerkness as “the ultimate problem in meteorology” (Bjerkness, 1911).

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the problem of scattering of time-harmonic acoustic waves by an unbounded sound-soft rough surface. Recently, a Brakhage Werner type integral equation formulation of this problem has been proposed, based on an ansatz as a combined single- and double-layer potential, but replacing the usual fundamental solution of the Helmholtz equation with an appropriate half-space Green's function. Moreover, it has been shown in the three-dimensional case that this integral equation is uniquely solvable in the space L-2 (Gamma) when the scattering surface G does not differ too much from a plane. In this paper, we show that this integral equation is uniquely solvable with no restriction on the surface elevation or slope. Moreover, we construct explicit bounds on the inverse of the associated boundary integral operator, as a function of the wave number, the parameter coupling the single- and double-layer potentials, and the maximum surface slope. These bounds show that the norm of the inverse operator is bounded uniformly in the wave number, kappa, for kappa > 0, if the coupling parameter h is chosen proportional to the wave number. In the case when G is a plane, we show that the choice eta = kappa/2 is nearly optimal in terms of minimizing the condition number.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we consider the impedance boundary value problem for the Helmholtz equation in a half-plane with piecewise constant boundary data, a problem which models, for example, outdoor sound propagation over inhomogeneous. at terrain. To achieve good approximation at high frequencies with a relatively low number of degrees of freedom, we propose a novel Galerkin boundary element method, using a graded mesh with smaller elements adjacent to discontinuities in impedance and a special set of basis functions so that, on each element, the approximation space contains polynomials ( of degree.) multiplied by traces of plane waves on the boundary. We prove stability and convergence and show that the error in computing the total acoustic field is O( N-(v+1) log(1/2) N), where the number of degrees of freedom is proportional to N logN. This error estimate is independent of the wavenumber, and thus the number of degrees of freedom required to achieve a prescribed level of accuracy does not increase as the wavenumber tends to infinity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many recent inverse scattering techniques have been designed for single frequency scattered fields in the frequency domain. In practice, however, the data is collected in the time domain. Frequency domain inverse scattering algorithms obviously apply to time-harmonic scattering, or nearly time-harmonic scattering, through application of the Fourier transform. Fourier transform techniques can also be applied to non-time-harmonic scattering from pulses. Our goal here is twofold: first, to establish conditions on the time-dependent waves that provide a correspondence between time domain and frequency domain inverse scattering via Fourier transforms without recourse to the conventional limiting amplitude principle; secondly, we apply the analysis in the first part of this work toward the extension of a particular scattering technique, namely the point source method, to scattering from the requisite pulses. Numerical examples illustrate the method and suggest that reconstructions from admissible pulses deliver superior reconstructions compared to straight averaging of multi-frequency data. Copyright (C) 2006 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we show stability and convergence for a novel Galerkin boundary element method approach to the impedance boundary value problem for the Helmholtz equation in a half-plane with piecewise constant boundary data. This problem models, for example, outdoor sound propagation over inhomogeneous flat terrain. To achieve a good approximation with a relatively low number of degrees of freedom we employ a graded mesh with smaller elements adjacent to discontinuities in impedance, and a special set of basis functions for the Galerkin method so that, on each element, the approximation space consists of polynomials (of degree $\nu$) multiplied by traces of plane waves on the boundary. In the case where the impedance is constant outside an interval $[a,b]$, which only requires the discretization of $[a,b]$, we show theoretically and experimentally that the $L_2$ error in computing the acoustic field on $[a,b]$ is ${\cal O}(\log^{\nu+3/2}|k(b-a)| M^{-(\nu+1)})$, where $M$ is the number of degrees of freedom and $k$ is the wavenumber. This indicates that the proposed method is especially commendable for large intervals or a high wavenumber. In a final section we sketch how the same methodology extends to more general scattering problems.