988 resultados para Interfacial gel polymerization
Resumo:
Two kinds of novel macrocyclic aryl thioether ether oligomers were synthesized by nucleophilic condensation reaction in high yields under pseudo-high-dilution condition. A combination of H-1 NMR, GPC and MALDI-TOF MS analyses unambiguously confirmed the cyclic nature and their distributions, Macrocyclic thioether ether ketone oligomers can undergo facile melt ring opening polymerization(ROP) initiated by thiyl radical to give a high molecular weight polymer.
Resumo:
Function of chloride and effect of various alkylaluminiums, C1/A1 molar ratio, solvents on cyclization in situ of isoprene polymerization catalyzed by Nd-Al bimetallic complex were studied. The structure of cyclized products was characterized by means of IR and H-1 NMR, The results indicated that in the course of isoprene polymerization with rare earth catalytic system, the function of alkylchloride introduced is terminating cis-polymerization and generating cationic species with alkyl-aluminums to initiate cyclization in situ. Soluble cyclized polyisoprene was obtained with fragments of cyclopolyisoprene.
Resumo:
A hydrogen peroxide biosensor was fabricated by coating a sol-gel-peroxidase layer onto a Nafion-methylene green modified electrode. Immobilization of methylene green (MG) was attributed to the electrostatic force between MG(+) and the negatively charged sulfonic acid groups in Nafion polymer, whereas immobilization of horseradish peroxidase was attributed to the encapsulation function of the silica sol-gel network. Cyclic voltammetry and chronoamperometry were employed to demonstrate the feasibility of electron transfer between sol-gel-immobilized peroxidase and a glassy carbon electrode. Performance of the sensor was evaluated with respect to response time, sensitivity as well as operational stability. The enzyme electrode has a sensitivity of 13.5 mu A mM(-1) with a detection limit of 1.0 x 10(-7) M H2O2, and the sensor achieved 95% of the steady-state current within 20 s. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
A new type of organic-inorganic composite material was prepared by sol-gel method, and a peroxidase biosensor was fabricated by simply dropping sor-gel-peroxidase mixture onto glassy carbon electrode surface. The sol-gel composite film and enzyme membrane were characterized by Fourier-transform infrared (FT-IR) spectroscopy and EQCM, the electrochemical behavior of the biosensor was studied with potassium hexacyanoferrate(II) as a mediator, and the effects of pH and operating potential were explored for optimum analytical performance by using amperometric method. The response time of the biosensor was about 10 s; the linear range was up to 3.4 mM with a detection limit of 5 x 10(-7) M. The sensor also exhibited high sensitivity (15 mu A mM(-1)) and good long-term stability. In addition, the performance of the biosensor was investigated using flow injection analysis (FIA), and the determination of hydrogen peroxide in real samples was discussed. (C)2000 Elsevier Science B.V. All rights reserved.
Resumo:
A novel AB-monomer, 3-maleimidostilbene (ST-MAI), was synthesized. DSC investigation indicated that the ST-MAI monomer melted at 127 degrees C and thermally polymerized in the temperature range of 180 similar to 300 degrees C. LR investigation on the thermal polymerization processes proved that the thermal polymerization included not only copolymerizaiton between stilbene and maleimide, but also homopolymerization of maleimide. The largest reaction conversion of maleimide and stilbene unit in a ST-MAI monomer was about 82% and 50% respectively. The glass transition temperature of cured ST-MAI resin was 234 degrees C, determined by DSC. The decomposition temperatures for 10% weight loss was above 430 degrees C in both air and nitrogen atmospheres.
Resumo:
This paper studies the radiation properties of the immiscible blend of nylon1010 and HIPS. The gel fraction increased with increasing radiation dose. The network was found mostly in nylon1010, the networks were also found in both nylon1010 and HIPS when the dose reaches 0.85 MGy or more. We used the Charleby-Pinner equation and the modified Zhang-Sun-Qian equation to simulate the relationship with the dose and the sol fraction. The latter equation fits well with these polymer blends and the relationship used by it showed better linearity than the one by the Charleby-Pinner equation. We also studied the conditions of formation of the network by the mathematical expectation theorem for the binary system. Thermal properties of polymer blend were observed by DSC curves. The crystallization temperature decreases with increasing dose because the cross-linking reaction inhibited the crystallization procession and destroyed the crystals. The melting temperature also reduced with increasing radiation dose. The dual melting peak gradually shifted to single peak and the high melting peak disappeared at high radiation dose. However, the radiation-induced crystallization was observed by the heat of fusion increasing at low radiation dose. On the other hand, the crystal will be damaged by radiation. A similar conclusion may be drawn by the DSC traces when the polymer blends were crystallized. When the radiation dose increases, the heat of fusion reduces dramatically and so does the heat of crystallization. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
The sol-gel technique was used here to construct heteropolyanion-containing modified electrodes. This involves two steps, i.e. the first forming a functionalized sol-gel thin film on the surface of the glassy carbon electrode and then immersing the electrode into a heteropolyanion solution to incorporate the heteropolyanion into the sol-gel film. Here a Dawson-type heteropolyanion, K6P2W18O62 (P2W18), was used as a representative to illuminate the behavior of the as-prepared composite film. The electrochemical performance of the P2W18-modified electrode was studied with respect to the pH effect and long-term stability. The modified electrode exhibited a high electrocatalytic response for the reduction of BrO3- and NO2-. Steady-state amperometry was applied to characterize the electrode as an amperometric sensor for the determination of NO2-. The sensor had a linear range from 0.02 to 34 mM and a detection limit of 5 x 10(-6) M. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
To obtain a novel support with practical value for metallocene catalyst (eta -C5H5)TiCl3 (CpTiCl3), poly (styrene-co-4-vinylpyridine) /SiO2 nanoscale hybrid material (SrP/SiO2) was firstly produced as support. After pretreatment by methylaluminoxane (MAO), the hybrid materials reacted with CpTiCl3. The results from SAXS, SEM and TEM indicated the morphology and structure of organic/inorganic hybrid materials, and the size of inorganic particle in hybrid was nanoscale. The results from IR and XPS showed that there were two possible cationic active species in the hybrid-supported catalyst, the polymerization results of styrene proved this possibility.
Resumo:
Eu3+-activated calcium silicate (CaO-SiO2:Eu3+) luminescent films were prepared by the sol-gel method. The structural evolution of the film was studied by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), and the luminescence properties of the phosphor films were investigated as a function of heat treatment temperature. The XRD study indicates that a kilchoanite phase forms in the film sintered at 800 degreesC, which is different from that in gel powder treated under the same conditions. The SEM results show that the film thickness decreases and the particles in the film become smaller with increasing heat treatment temperature. The CaO-SiO2:Eu film shows the characteristic emission of Eu3+ under UV excitation, with the Eu3+ D-5(0)-->F-7(2) band (616 nm) being the most prominent. A large difference in the Eu3+ lifetime is observed between the film samples treated at 500 and 700 degreesC (or above). Concentration quenching occurs when the Eu3+ doping concentration is above 6 mol% of Ca2+ in the film.
Resumo:
9,10-Phenanthrenequinone (PQ) supported on graphite powder by adsorption was dispersed in propyltrimethoxysilane-derived gels to yield a conductive composite which was used as electrode material to fabricate a PQ-modified carbon ceramic electrode. In this configuration, PQ acts as a catalyst, graphite powder guarantees conductivity by percolation, the silicate provides a rigid porous backbone, and the propyl groups endow hydrophobicity and thus limit the wetting region of the modified electrode. Square-wave voltammetry was exploited to investigate the pH-dependent electrochemical behavior of the composite electrode and an almost Nernstian response was obtained from pH 0.42 to 6.84. Because the chemically modified electrode can electrocatalyze the reduction of iodate in acidic aqueous solution (pH 2.45), it was used as an amperometric sensor for the determination of iodate in table salt. The advantages of the electrode are that it can be polished in the event of surface fouling, it is simple to prepare, has excellent chemical and mechanical stability, and the reproducibility of surface-renewal is good.
Resumo:
A new type of tyrosinase biosensor was developed for the detection of phenolic compounds, based on the immobilization of tyrosinase in a sol-gel-derived composite matrix that is composed of titanium oxide sol and a grafting copolymer of poly(vinyl alcohol) with 4-vinylpyridine. Tyrosinase entrapped in the composite matrix can retain its activity to a large extent owing to the good biocompatibility of the matrix. The parameters of the fabrication process and the variables of the experimental conditions for the enzyme electrode were optimized. The resulting sensor exhibited a fast response (20 s), high sensitivity (145.5 muA mmol(-1) 1) and good storage stability. A detection limit of 0.5 muM catechol was obtained at a signal-to-noise ratio of 3.
Resumo:
A hybrid material with a conductive organic network in an inorganic matrix has been prepared by in-situ hydrolysis/polycondensation of TEOS in an aqueous solution of a solubilized polyaniline. Due to intense hydrogen bonding (indicated by Si-29 NMR and FTIR) the conductive polymer is very well dispersed in the silica matrix. The Figure shows SEM images of a 46/54 wt.-% hybrid at two temperatures (left 20 degreesC, right 100 degreesC).
Resumo:
A reagentless amperometric hydrogen peroxide biosensor was developed. Horseradish peroxidase (HRP) was immobilized in a novel sol-gel organic-inorganic hybrid matrix that is composed of silica sol and a grafting copolymer of poly(vinyl alcohol) with 4-vinylpyridine (PVA-g-PVP). Tetrathiafulvalene (TTF) was employed as a mediator and could lower the operating potential to -50 mV (versus Ag/AgCl). The sensor achieved 95% of the steady-state current in 15 s. Linear calibration for hydrogen peroxide was up to 1.3 mM with the detection limit of 2.5 x 10(-7)M. The enzyme electrode retained about 94% of its initial activity after 30 days of storage in a dry state at 4 degreesC.
Resumo:
The metallocene complexes ((BuC5H4)-Bu-t)(2)MCl2 (M=Ti (1a), Zr (1b), Hf (1c)) and (tBu2C5H3)(2)MCl2 (M=Ti (2a), Zr (2b), Hf (2c)) were synthesized by the react ions of Li (BuC5H4)-Bu-t and (LiBu2C5H3)-Bu-t with metal tetrachloride in THF solution. The complexes were characterized by their IR, H-1-NMR and EI-MS. The molecular structure of Ic was determined by X-ray single-crystal structure analysis. The complexes (1a similar to 2c) exhibited high activities for ethylene polymerizatin (up to 3.2x10(6) gPE/mol.h) in the presence of methylaluminoxane (MAO) at room temperature.