988 resultados para Human anatomy.
Resumo:
Alcohol consumption and tobacco smoking are major causes of head and neck cancers, and regional differences point to the importance of research into gene-environment interactions. Much interest has been focused on polymorphisms of CYP1A1 and of GSTM1 and GSTT1, but a number of studies have not demonstrated significant effects. This has mostly been ascribed to small sample sizes. In general, the impact of polymorphisms of metabolic enzymes appears inconsistent, with some reports of weak-to-moderate associations, and with others of no elevation of risks. The classical cytochrome P450 isoenzyme considered for metabolic activation of polycyclic aromatic hydrocarbons (PAH) is CYP1A1. A new member of the CYP1 family, CYP1B1, was cloned in 1994, currently representing the only member of the CYP1B subfamily. A number of single nucleotide polymorphisms of the CYP1B1 gene have been reported. The amino acid substitutions Val432Leu (CYP1B1*3) and Asn453Ser (CYP1B1*4), located in the heme binding domain of CYP1B1, appear as likely candidates to be linked with biological effects. CYP1B1 activates a wide range of PAH, aromatic and heterocyclic amines. Very recently, the CYP1B1 codon 432 polymorphism (CYP1B1*3) has been identified as a susceptibility factor in smoking-related head-and-neck squamous cell cancer. The impact of this polymorphic variant of CYP1B1 on cancer risk was also reflected by an association with the frequency of somatic mutations of the p53 gene. Combined genotype analysis of CYP1B1 and the glutathione transferases GSTM1 or GSTT1 has pointed to interactive effects. This provides new molecular evidence that tobacco smoke-specific compounds relevant to head and neck carcinogenesis are metabolically activated through CYP1B1 and is consistent with a major pathogenetic relevance of PAH as ingredients of tobacco smoke.
Resumo:
Inherited genetic traits co-determine the susceptibility of an individual to a toxic chemical. Special emphasis has been put on individual responses to environmental and industrial carcinogens, but other chronic diseases are of increasing interest. Polymorphisms of relevant xenobiotic metabolising enzymes may be used as toxicological susceptibility markers. A growing number of genes encoding enzymes involved in biotransformation of toxicants and in cellular defence against toxicant-induced damage to the cells has been identified and cloned, leading to increased knowledge of allelic variants of genes and genetic defects that may result in a differential susceptibility toward environmental toxicants. "Low penetrating" polymorphisms in metabolism genes tend to be much more common in the population than allelic variants of "high penetrating" cancer genes, and are therefore of considerable importance from a public health point of view. Positive associations between cancer and CYP1A1 alleles, in particular the *2C I462V allele, were found for tissues following the aerodigestive tract. Again, in most cases, the effect of the variant CYP1A1 allele becomes apparent or clearer in connection with the GSTM1 null allele. The CYP1B1 codon 432 polymorphism (CYP1B1*3) has been identified as a susceptibility factor in smoking-related head-and-neck squameous cell cancer. The impact of this polymorphic variant of CYP1B1 on cancer risk was also reflected by an association with the frequency of somatic mutations of the p53 gene. Combined genotype analysis of CYP1B1 and the glutathione transferases GSTM1 or GSTT1 has also pointed to interactive effects. Of particular interest for the industrial and environmental field is the isozyme CYP2E1. Several genotypes of this isozyme have been characterised which seem to be associated with different levels of expression of enzyme activity. The acetylator status for NAT2 can be determined by genotyping or by phenotyping. In the pathogenesis of human bladder cancer due to occupational exposure to "classical" aromatic amines (benzidine, 4-aminodiphenyl, 1-naphthylamine) acetylation by NAT2 is regarded as a detoxication step. Interestingly, the underlying European findings of a higher susceptibility of slow acetylators towards aromatic amines are in contrast to findings in Chinese workers occupationally exposed to aromatic amines which points to different mechanisms of susceptibility between European and Chinese populations. Regarding human bladder cancer, the hypothesis has been put forward that genetic polymorphism of GSTM1 might be linked with the occurrence of this tumour type. This supports the hypothesis that exposure to PAH might causally be involved in urothelial cancers. The human polymorphic GST catalysing conjugation of halomethanes, dihalomethanes, ethylene oxide and a number of other industrial compounds could be characterised as a class theta enzyme (GSTT1) by means of molecular biology. "Conjugator" and "non-conjugator" phenotypes are coincident with the presence and absence of the GSTT1 gene. There are wide variations in the frequencies of GSTT1 deletion (GSTT1 *0/0) among different ethnicities. Human phenotyping is facilitated by the GST activity towards methyl bromide or ethylene oxide in erythrocytes which is representative of the metabolic GSTT1 competence of the entire organism. Inter-individual variations in xenobiotic metabolism capacities may be due to polymorphisms of the genes coding for the enzymes themselves or of the genes coding for the receptors or transcription factors which regulate the expression of the enzymes. Also, polymorphisms in several regions of genes may cause altered ligand affinity, transactivation activity or expression levels of the receptor subsequently influencing the expression of the downstream target genes. Studies of individual susceptibility to toxicants and gene-environment interaction are now emerging as an important component of molecular epidemiology.
Resumo:
Methylene chloride (dichloromethane) is widely used as a solvent for stripping of paint, as industrial cleaning agent, for coating of pills in the pharmaceutical industry, and in the decaffeination of coffee. There is “sufficient evidence for the carcinogenicity” of methylene chloride in animals and “inadequate evidence for its carcinogenity in humans”, according to IARC (IARC 1987; CEC 1990).
Resumo:
The growing knowledge of the genetic polymorphisms of enzymes metabolising xenobiotics in humans and their connections with individual susceptibility towards toxicants has created new and important interfaces between human epidemiology and experimental toxicology. The results of molecular epidemiological studies may provide new hypotheses and concepts, which call for experimental verification, and experimental concepts may obtain further proof by molecular epidemiological studies. If applied diligently, these possibilities may be combined to lead to new strategies of human-oriented toxicological research. This overview will present some outstanding examples for such strategies taken from the practically very important field of occupational toxicology. The main focus is placed on the effects of enzyme polymorphisms of the xenobiotic metabolism in association with the induction of bladder cancer and renal cell cancer after exposure to occupational chemicals. Also, smoking and induction of head and neck squamous cell cancer are considered.
Resumo:
The high acute toxicity of acrylonitrile may be a result of its intrinsic biological reactivity or of its metabolite cyanide. Intravenous N-acetylcysteine has been recommended for treatment of accidental intoxications in acrylonitrile workers, but such recommendations vary internationally. Acrylonitrile is metabolized in humans and experimental animals via two competing pathways; the glutathione-dependent pathway is considered to represent an avenue of detoxication whilst the oxidative pathway leads to a genotoxic epoxide, cyanoethylene oxide, and to elimination of cyanide. Cases of acute acrylonitrile overexposure or intoxication have occurred within persons having industrial contact with acrylonitrile; the route of exposure was by inhalation and/or by skin contact. The combined observations lead to the conclusion of a much higher impact of the oxidative metabolism of acrylonitrile in humans than in rodents. This is confirmed by differences in the clinical picture of acute life-threatening intoxications in both species, as well as by differential efficacies of antidotes. A combination of N-acetylcysteine with sodium thiosulfate seems an appropriate measure for antidote therapy of acute acrylonitrile intoxications. Clinical observations also highlight the practical importance of human individual susceptibility differences. Furthermore, differential adduct monitoring, assessing protein adducts with different rates of decay, enables the development of more elaborated biological monitoring strategies for the surveillance of workers with potential acrylonitrile contact.
Resumo:
Case reports of human accidental poisonings point to significant individual differences in human acrylonitrile metabolism and toxicity. A cohort of 59 persons with industrial handling of low levels of acrylonitrile has repetitively been studied from 1994 through 1999 as part of a medical surveillance programme. The analyses included adduct determinations of N-terminal N-(cyanoethyl)valine in haemoglobin and genotypings of the following cytochrome P-450 2E1 (CYP2E1) polymorphisms: G-1259C and C-1019T (two subjects heterozygous), A-316G (three subjects heterozygous), T-297A (15 subjects heterozygous), G-35T (eight subjects heterozygous), G4804A (two subjects heterozygous), T7668A (six subjects heterozygous). N-(Cyanoethyl)valine adduct levels were, if any, only slightly influenced by smoking and mainly determined by the external acrylonitrile exposures. The individual means and medians of N-(cyanoethyl)valine levels over the entire observation period were compared with the CYP2E1 variants (Wilcoxon rank sum test). No influences of the investigated CYP2E1 polymorphisms on the N-(cyanoethyl)valine levels appeared at the 5% level. However, there was a trend, at a level of P≃0.1, pointing to higher acrylonitrile-specific adduct levels in persons with the A-316G mutation. Higher adduct levels would be compatible with a slower CYP2E1-mediated metabolism of acrylonitrile and with lower extents of toxification to cyanide.
Resumo:
The rat theta class glutathione S-transferase (GST) 5-5 has been shown to affect the mutagenicity of halogenated alkanes and epoxides. In Salmonella typhimurium TA1535 expressing the rat GST5-5 the number of revertants was increased compared to the control strain by CH2Br2, ethylene dibromide (EDB) and 1,2,3,4-diepoxybutane (BDE); in contrast, mutagenicity of 1,2-epoxy-3-(4'-nitrophenoxy)propane (EPNP) was reduced. S.typhimurium TA1535 cells were transformed with an expression plasmid carrying the cDNA of the human theta ortholog GST1-1 either in sense or antisense orientation, the latter being the control. These transformed bacteria were utilized for mutagenicity assays. Mutagenicity of EDB, BDE, CH2Br2, epibromohydrin and 1,3-dichloroacetone was higher in the S.typhimurium TA1535 expressing GSTT1-1 than in the control strain. The expression of active enzyme did not affect the mutagenicity of 1,2-epoxy-3-butene or propylene oxide, GSTT1-1 expression reduced the mutagenicity of EPNP. Glutathione S-transferase 5-5 and GSTT1-1 modulate genotoxicity of several industrially important chemicals in the same way. Polymorphism of the GSTT1 locus in humans may therefore cause differences in cancer susceptibility between the two phenotypes.
Resumo:
The transformation of ethylene oxide (EO), propylene oxide (PO) and 1- butylene oxide (1-BuO) by human glutathione transferase theta (hGSTT1-1) was studied comparatively using 'conjugator' (GSTT1 + individuals) erythrocyte lysates. The relative sequence of velocity of enzymic transformation was PO > EO >> 1-BuO. The faster transformation of PO compared to EO was corroborated in studies with human and rat GSTT1-1 (hGSTT1-1 and rGSTT1-1, respectively) expressed by Salmonella typhimurium TA1535. This sequence of reactivities of homologous epoxides towards GSTT1-1 contrasts to the sequence observed in homologous alkyl halides (methyl bromide, MBr; ethyl bromide, EtBr; n-propyl bromide, PrBr) where the relative sequence MeBr >> EtBr > PrBr is observed. The higher reactivity towards GSTT1-1 of propylene oxide compared to ethylene oxide is consistent with a higher chemical reactivity. This is corroborated by experimental data of acid-catalysed hydrolysis of a number of aliphatic epoxides, including ethylene oxide and propylene oxide and consistent with semi-empirical molecular orbital modelings.
Resumo:
A new method has been developed for the quantification of 2-hydroxyethylated cysteine resulting as adduct in blood proteins after human exposure to ethylene oxide, by reversed-phase HPLC with fluorometric detection. The specific adduct is analysed in albumin and in globin. After isolation of albumin and globin from blood, acid hydrolysis of the protein and precolumn derivatisation of the digest with 9-fluorenylmethoxycarbonylchloride, the levels of derivatised S-hydroxyethylcysteine are analysed by RP-HPLC and fluorescence detection, with a detection limit of 8 nmol/g protein. Background levels of S-hydroxyethylcysteine were quantified in both albumin and globin, under special consideration of the glutathione transferase GSTT1 and GSTM1 polymorphisms. GSTT1 polymorphism had a marked influence on the physiological background alkylation of cysteine. While S-hydroxyethylcysteine levels in "non-conjugators" were between 15 and 50 nmol/g albumin, "low conjugators" displayed levels between 8 and 21 nmol/g albumin, and "high conjugators" did not show levels above the detection limit. The human GSTM1 polymorphism had no apparent effect on background levels of blood protein 2-hydroxyethylation.
Resumo:
A descriptive study was undertaken to establish the 95 percentile limits (proposed normal reference range) for pressure beneath the hallux, metatarsal heads, and heel in a group of healthy adult subjects. A new force plate device capable of accurately measuring discrete areas of pressure beneath the human foot with high temporal and spatial resolution was used. The system is capable of accurately measuring plantar foot pressure during dynamic and static foot function. The results of this research are in close agreement with other published studies of plantar foot pressure measurement with comparable systems.
Resumo:
Despite the prominent use of the pubic symphysis for age estimation in forensic anthropology, little has been documented regarding the quantitative morphological and micro-architectural changes of this surface. Specifically, utilising post-mortem computed tomography data from a large, contemporary Australian adult population, this study aimed to evaluate sexual dimorphism in the morphology and bone composition of the symphyseal surface; and temporal characterisation of the pubic symphysis in individuals of advancing age. The sample consisted of multi-slice computed tomography (MSCT) scans of the pubic symphysis(slice thickness: 0.5 mm, overlap: 0.1 mm) of 200 individuals of Caucasian ancestry aged 15–70 years, obtained in 2011. Surface rendering reconstruction of the symphyseal surface was conducted in OsiriX1 (v.4.1) and quantitative analyses in Rapidform XOSTM and OsteomeasureTM. Morphometric variables including inter-pubic distance, surface area, circumference, maximum height and width of the symphyseal surface and micro-architectural assessment of cortical and trabecular bone compositions were quantified using novel automated engineering software capabilities. The major results of this study are correlated with the macroscopic ossification and degeneration pattern of the symphyseal surface, demonstrating significant age-related changes in the morphometric and bone tissue variables between 15 and 70 years. Regardless of sex, the overall dimensions of the symphyseal surface increased with age, coupled with a decrease in bone mass in the trabecular and cortical bone compartments. Significant differences between the ventral, dorsal and medial cortical surfaces were observed, which may be correlated to bone formation activity dependent on muscle activity and ligamentous attachments. Our study demonstrates significant sexual dimorphism at this site, with males exhibiting greater surface dimensions than females. These baseline results provide a detailed insight into the changes in the structure of the pubic symphysis with ageing and sexually dimorphic features associated with the cortical and trabecular bone profiles.
Resumo:
The solutions proposed in this thesis contribute to improve gait recognition performance in practical scenarios that further enable the adoption of gait recognition into real world security and forensic applications that require identifying humans at a distance. Pioneering work has been conducted on frontal gait recognition using depth images to allow gait to be integrated with biometric walkthrough portals. The effects of gait challenging conditions including clothing, carrying goods, and viewpoint have been explored. Enhanced approaches are proposed on segmentation, feature extraction, feature optimisation and classification elements, and state-of-the-art recognition performance has been achieved. A frontal depth gait database has been developed and made available to the research community for further investigation. Solutions are explored in 2D and 3D domains using multiple images sources, and both domain-specific and independent modality gait features are proposed.
Resumo:
The repair of bone defects that result from periodontal diseases remains a clinical challenge for periodontal therapy. β-tricalcium phosphate (β-TCP) ceramics are biodegradable inorganic bone substitutes with inorganic components that are similar to those of bone. Demineralized bone matrix (DBM) is an acid-extracted organic matrix derived from bone sources that consists of the collagen and matrix proteins of bone. A few studies have documented the effects of DBM on the proliferation and osteogenic differentiation of human periodontal ligament cells (hPDLCs). The aim of the present study was to investigate the effects of inorganic and organic elements of bone on the proliferation and osteogenic differentiation of hPDLCs using three-dimensional porous β-TCP ceramics and DBM with or without osteogenic inducers. Primary hPDLCs were isolated from human periodontal ligaments. The proliferation of the hPDLCs on the scaffolds in the growth culture medium was examined using a Cell‑Counting kit‑8 (CCK-8) and scanning electron microscopy (SEM). Alkaline phosphatase (ALP) activity and the osteogenic differentiation of the hPDLCs cultured on the β-TCP ceramics and DBM were examined in both the growth culture medium and osteogenic culture medium. Specific osteogenic differentiation markers were examined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). SEM images revealed that the cells on the β-TCP were spindle-shaped and much more spread out compared with the cells on the DBM surfaces. There were no significant differences observed in cell proliferation between the β-TCP ceramics and the DBM scaffolds. Compared with the cells that were cultured on β-TCP ceramics, the ALP activity, as well as the Runx2 and osteocalcin (OCN) mRNA levels in the hPDLCs cultured on DBM were significantly enhanced both in the growth culture medium and the osteogenic culture medium. The organic elements of bone may exhibit greater osteogenic differentiation effects on hPDLCs than the inorganic elements.
Resumo:
One of the most significant activities induced by interferon-gamma against intracellular pathogens is the induction of IDO (indoleamine 2,3-dioxygenase) expression, which subsequently results in the depletion of tryptophan. We tested the hypothesis that human strains of Chlamydia pneumoniae are more sensitive to tryptophan limitation than animal C. pneumoniae strains. The human strains were significantly more sensitive to IFN-γ than the animal strains in a lung epithelia cell model (BEAS-2B), with exposure to 1 U ml(-1) IFN-γ resulting in complete loss of infectious yield of human strains, compared to the animal strains where reductions in infectious progeny were around 3.5-4.0 log. Strikingly, the IFN-γ induced loss of ability to form infectious progeny production was completely rescued by removal of the IFN-γ and addition of exogenous tryptophan for the human strains, but not the animal strains. In fact, a human heart strain was more capable of entering a non-infectious, viable persistent stage when exposed to IFN-γ and was also more effectively rescued, compared to a human respiratory strain. Exquisite susceptibility to IFN-γ, specifically due to tryptophan availability appears to be a core adaptation of the human C. pneumoniae strains, which may reflect the chronic nature of their infections in this host.
Resumo:
Rationale: Chronic lung disease characterized by loss of lung tissue,inflammation, and fibrosis represents a major global health burden. Cellular therapies that could restore pneumocytes and reduce inflammation and fibrosis would be a major advance in management. Objectives: To determine whether human amnion epithelial cells (hAECs), isolated from term placenta and having stem cell–like and antiinflammatory properties, could adopt an alveolar epithelial phenotype and repair a murine model of bleomycin-induced lung injury. Methods: Primary hAECs were cultured in small airway growth medium to determine whether the cells could adopt an alveolar epithelial phenotype. Undifferentiated primary hAECs were also injected parenterally into SCID mice after bleomycin-induced lung injury and analyzed for production of surfactant protein (SP)-A, SP-B, SP-C, and SP-D. Mouse lungs were also analyzed for inflammation and collagen deposition. Measurements and Main Results: hAECs grown in small airway growth medium developed an alveolar epithelial phenotype with lamellar body formation, production of SPs A–D, and SP-D secretion. Although hAECs injected into mice lacked SPs, hAECs recovered from mouse lungs 2 weeks posttransplantation produced SPs. hAECs remained engrafted over the 4-week test period. hAEC administration reduced inflammation in association with decreased monocyte chemoattractant protein-1, tumor necrosis factor-a, IL-1 and -6, and profibrotic transforming growth factor-b in mouse lungs. In addition,lung collagen content was significantly reduced by hAEC treatment as a possible consequence of increased degradation by matrix metalloproteinase-2 and down-regulation of the tissue inhibitors f matrix metalloproteinase-1 and 2. Conclusions: hAECs offer promise as a cellular therapy for alveolar restitution and to reduce lung inflammation and fibrosis.