958 resultados para Hard palate
Resumo:
Background: Ticks secrete a cement cone composed of many salivary proteins, some of which are rich in the amino acid glycine in order to attach to their hosts' skin. Glycine-rich proteins (GRPs) are a large family of heterogeneous proteins that have different functions and features; noteworthy are their adhesive and tensile characteristics. These properties may be essential for successful attachment of the metastriate ticks to the host and the prolonged feeding necessary for engorgement. In this work, we analyzed Expressed Sequence Tags (ESTs) similar to GRPs from cDNA libraries constructed from salivary glands of adult female ticks representing three hard, metastriate species in order to verify if their expression correlated with biological differences such as the numbers of hosts ticks feed on during their parasitic life cycle, whether one (monoxenous parasite) or two or more (heteroxenous parasite), and the anatomy of their mouthparts, whether short (Brevirostrata) or long (Longirostrata). These ticks were the monoxenous Brevirostrata tick, Rhipicephalus (Boophilus) microplus, a heteroxenous Brevirostrata tick, Rhipicephalus sanguineus, and a heteroxenous Longirostrata tick, Amblyomma cajennense. To further investigate this relationship, we conducted phylogenetic analyses using sequences of GRPs from these ticks as well as from other species of Brevirostrata and Longirostrata ticks. Results: cDNA libraries from salivary glands of the monoxenous tick, R. microplus, contained more contigs of glycine-rich proteins than the two representatives of heteroxenous ticks, R. sanguineus and A. cajennense (33 versus, respectively, 16 and 11). Transcripts of ESTs encoding GRPs were significantly more numerous in the salivary glands of the two Brevirostrata species when compared to the number of transcripts in the Longirostrata tick. The salivary gland libraries from Brevirostrata ticks contained numerous contigs significantly similar to silks of true spiders (17 and 8 in, respectively, R. microplus and R. sanguineus), whereas the Longirostrata tick contained only 4 contigs. The phylogenetic analyses of GRPs from various species of ticks showed that distinct clades encoding proteins with different biochemical properties are represented among species according to their biology. Conclusions: We found that different species of ticks rely on different types and amounts of GRPs in order to attach and feed on their hosts. Metastriate ticks with short mouthparts express more transcripts of GRPs than a tick with long mouthparts and the tick that feeds on a single host during its life cycle contain a greater variety of these proteins than ticks that feed on several hosts.
Resumo:
We report precision measurements of the Feynman x (x(F)) dependence, and first measurements of the transverse momentum (p(T)) dependence, of transverse single-spin asymmetries for the production of pi(0) mesons from polarized proton collisions at s=200 GeV. The x(F) dependence of the results is in fair agreement with perturbative QCD model calculations that identify orbital motion of quarks and gluons within the proton as the origin of the spin effects. Results for the p(T) dependence at fixed x(F) are not consistent with these same perturbative QCD-based calculations.
Resumo:
Objective: The aim of this study was to investigate the effect of low-level laser therapy (LLLT) on the treatment of burning mouth syndrome (BMS). In addition, the laser effect was compared on the different affected oral sites. Materials and Methods: Eleven subjects with a total of 25 sites (tongue, lower lip, upper lip, and palate) affected by a burning sensation were selected. The affected areas were irradiated once a week for three consecutive weeks with an infrared laser (lambda = 790 nm). The probe was kept in contact with the tissue, and the mucosal surface was scanned during the irradiation. The exposure time was calculated based on the fluence of 6 J/cm(2), the output power of 120 mW, and the area to be treated. Burning intensity was recorded through a visual analog scale before and after the treatment and at the 6-week follow-up. The percentage of the improvement in symptoms was also obtained. Results: Burning intensity at the end of the laser therapy was statistically lower than at the beginning (p < 0.01). Patients reported an 80.4% reduction in the intensity of symptoms after laser treatment. There was no statistical difference between the end of the treatment and the 6-week follow-up, except for the tongue site. Conclusion: Under the investigated parameters, infrared LLLT proved to be a valuable alternative for BMS treatment, providing a significant and lasting reduction in symptoms.
Resumo:
Objective: The purpose of this study was to evaluate the ablation capacity of different energies and pulse repetition rates of Er:YAG laser energy on primary molar enamel, by assessing mass loss and by analyzing the surface morphology with scanning electron microscopy. Background Data: Previous studies have demonstrated the capacity of the Er:YAG laser to ablate enamel substrate. Methods: Forty-two sound primary molars were bisected in a mesiodistal direction. The enamel surfaces were flattened and their initial mass (in milligrams) was obtained. An area of 4 mm(2) was delimited. The specimens were randomly assigned to 12 groups according to the combination of energy (160, 200, 250, and 300 mJ) and pulse repetition rate (2, 3, and 4 Hz). Er: YAG laser irradiation was performed on each specimen for 20 sec. After irradiation, the final mass was obtained and specimens were prepared for examination with scanning electron microscopy. The data obtained by subtracting the final mass from the initial mass were statistically analyzed using ANOVA and the Tukey test (p < 0.05). Results: The pulse repetition rate of 4 Hz provided greater mass loss, different from that seen with 2 Hz, and similar to that seen with 3 Hz. The energy level of 300 mJ resulted in greater mass loss, similar to that seen with 200 and 250 mJ. Scanning electron photomicrographs showed that there was non-selective enamel removal, with fused and cracked areas in all specimens. Conclusion: The parameters of 200 mJ and 2 Hz produced a good ablation rate with fewer surface alterations in primary molar enamel.
Three-dimensional finite element thermal analysis of dental tissues irradiated with Er,Cr:YSGG laser
Resumo:
In the present study, a finite element model of a half-sectioned molar tooth was developed in order to understand the thermal behavior of dental hard tissues (both enamel and dentin) under laser irradiation. The model was validated by comparing it with an in vitro experiment where a sound molar tooth was irradiated by an Er,Cr:YSGG pulsed laser. The numerical tooth model was conceived to simulate the in vitro experiment, reproducing the dimensions and physical conditions of the typical molar sound tooth, considering laser energy absorption and calculating the heat transfer through the dental tissues in three dimensions. The numerical assay considered the same three laser energy densities at the same wavelength (2.79 mu m) used in the experiment. A thermographic camera was used to perform the in vitro experiment, in which an Er, Cr: YSGG laser (2.79 mu m) was used to irradiate tooth samples and the infrared images obtained were stored and analyzed. The temperature increments in both the finite element model and the in vitro experiment were compared. The distribution of temperature inside the tooth versus time plotted for two critical points showed a relatively good agreement between the results of the experiment and model. The three dimensional model allows one to understand how the heat propagates through the dentin and enamel and to relate the amount of energy applied, width of the laser pulses, and temperature inside the tooth. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2953526]
Resumo:
Context. It was proposed earlier that the relativistic ejections observed in microquasars could be produced by violent magnetic reconnection episodes at the inner disk coronal region (de Gouveia Dal Pino & Lazarian 2005). Aims. Here we revisit this model, which employs a standard accretion disk description and fast magnetic reconnection theory, and discuss the role of magnetic reconnection and associated heating and particle acceleration in different jet/disk accretion systems, namely young stellar objects (YSOs), microquasars, and active galactic nuclei (AGNs). Methods. In microquasars and AGNs, violent reconnection episodes between the magnetic field lines of the inner disk region and those that are anchored in the black hole are able to heat the coronal/disk gas and accelerate the plasma to relativistic velocities through a diffusive first-order Fermi-like process within the reconnection site that will produce intermittent relativistic ejections or plasmons. Results. The resulting power-law electron distribution is compatible with the synchrotron radio spectrum observed during the outbursts of these sources. A diagram of the magnetic energy rate released by violent reconnection as a function of the black hole (BH) mass spanning 10(9) orders of magnitude shows that the magnetic reconnection power is more than sufficient to explain the observed radio luminosities of the outbursts from microquasars to low luminous AGNs. In addition, the magnetic reconnection events cause the heating of the coronal gas, which can be conducted back to the disk to enhance its thermal soft X-ray emission as observed during outbursts in microquasars. The decay of the hard X-ray emission right after a radio flare could also be explained in this model due to the escape of relativistic electrons with the evolving jet outburst. In the case of YSOs a similar magnetic configuration can be reached that could possibly produce observed X-ray flares in some sources and provide the heating at the jet launching base, but only if violent magnetic reconnection events occur with episodic, very short-duration accretion rates which are similar to 100-1000 times larger than the typical average accretion rates expected for more evolved (T Tauri) YSOs.
Resumo:
Dental implant materials are required to enable good apposition of bone and soft tissues. They must show sufficient resistance to chemical, physical and biological stress in the oral cavity to achieve good long-term outcomes. A critical issue is the apposition of the soft tissues, as they have provided a quasi-physiological closure of oral cavity. The present experiment was performed to study the peri-implant tissue response to non-submerged (1-stage) implant installation procedures. Two different implants types (NobelBiocare, NobelReplace (R) Tapered Groovy 4.3 x 10 mm and Replace (R) Select Tapered TiU RP 4.3 x 10 mm) were inserted into the right and left sides of 8 domestic pigs (Sus scrofa domestica) mandibles, between canines and premolars and immediately provided with a ceramic crown. Primary implant stability was determined using ressonance frequency analysis. Soft tissue parameters were assessed: sulcus depth (SDI) and junctional epithelium (JE). Following 70 days of healing, jaw sections were processed for histology and histomorphometric examination. Undecalcified histological sections demonstrated osseointegration with direct bone contact. The soft tissue parameters revealed no significant differences between the two implant types. The peri-implant soft tissues appear to behave similarly in both implant types.
Resumo:
Objective: The aim of this study was to assess by atomic force microscopy (AFM) the effect of Er,Cr:YSGG laser application on the surface microtopography of radicular dentin. Background: Lasers have been used for various purposes in dentistry, where they are clinically effective when used in an appropriate manner. The Er, Cr: YSGG laser can be used for caries prevention when settings are below the ablation threshold. Materials and Methods: Four specimens of bovine dentin were irradiated using an Er, Cr:YSGG laser (lambda = 2.78 mu m), at a repetition rate of 20 Hz, with a 750-mu m-diameter sapphire tip and energy density of 2.8 J/cm(2) (12.5 mJ/pulse). After irradiation, surface topography was analyzed by AFM using a Si probe in tapping mode. Quantitative and qualitative information concerning the arithmetic average roughness (Ra) and power spectral density analyses were obtained from central, intermediate, and peripheral areas of laser pulses and compared with data from nonirradiated samples. Results: Dentin Ra for different areas were as follows: central, 261.26 (+/- 21.65) nm; intermediate, 83.48 (+/- 6.34) nm; peripheral, 45.8 (+/- 13.47) nm; and nonirradiated, 35.18 (+/- 2.9) nm. The central region of laser pulses presented higher ablation of intertubular dentin, with about 340-760 nm height, while intermediate, peripheral, and nonirradiated regions presented no difference in height of peritubular and interperitubular dentin. Conclusion: According to these results, we can assume that even when used at a low-energy density parameter, Er, Cr: YSGG laser can significantly alter the microtopography of radicular dentin, which is an important characteristic to be considered when laser is used for clinical applications.
Resumo:
Hard-scattered parton probes produced in collisions of large nuclei indicate large partonic energy loss, possibly with collective produced-medium response to the lost energy. We present measurements of pi(0) trigger particles at transverse momenta p(T)(t) = 4-12 GeV/c and associated charged hadrons (p(T)(a) = 0.5-7 GeV/c) vs relative azimuthal angle Delta phi in Au + Au and p + p collisions at root s(NN) = 200 GeV. The Au + Au distribution at low p(T)(a), whose shape has been interpreted as a medium effect, is modified for p(T)(t) < 7 GeV/c. At higher p(T)(t), the data are consistent with unmodified or very weakly modified shapes, even for the lowest measured p(T)(a), which quantitatively challenges some medium response models. The associated yield of hadrons opposing the trigger particle in Au + Au relative to p + p (I(AA)) is suppressed at high p(T) (I(AA) approximate to 0.35-0.5), but less than for inclusive suppression (R(AA) approximate to 0.2).
Resumo:
We report on the event structure and double helicity asymmetry (A(LL)) of jet production in longitudinally polarized p + p collisions at root s = 200 GeV. Photons and charged particles were measured by the PHENIX experiment at midrapidity vertical bar eta vertical bar < 0.35 with the requirement of a high-momentum (> 2 GeV/c) photon in the event. Event structure, such as multiplicity, p(T) density and thrust in the PHENIX acceptance, were measured and compared with the results from the PYTHIA event generator and the GEANT detector simulation. The shape of jets and the underlying event were well reproduced at this collision energy. For the measurement of jet A(LL), photons and charged particles were clustered with a seed-cone algorithm to obtain the cluster pT sum (p(T)(reco)). The effect of detector response and the underlying events on p(T)(reco) was evaluated with the simulation. The production rate of reconstructed jets is satisfactorily reproduced with the next-to-leading-order and perturbative quantum chromodynamics jet production cross section. For 4< p(T)(reco) < 12 GeV/c with an average beam polarization of < P > = 49% we measured Lambda(LL) = -0.0014 +/- 0.0037(stat) at the lowest p(T)(reco) bin (4-5 GeV= c) and -0.0181 +/- 0.0282(stat) at the highest p(T)(reco) bin (10-12 GeV= c) with a beam polarization scale error of 9.4% and a pT scale error of 10%. Jets in the measured p(T)(reco) range arise primarily from hard-scattered gluons with momentum fraction 0: 02 < x < 0: 3 according to PYTHIA. The measured A(LL) is compared with predictions that assume various Delta G(x) distributions based on the Gluck-Reya-Stratmann-Vogelsang parameterization. The present result imposes the limit -a.1 < integral(0.3)(0.02) dx Delta G(x, mu(2) = GeV2) < 0.4 at 95% confidence level or integral(0.3)(0.002) dx Delta G(x, mu(2) = 1 GeV2) < 0.5 at 99% confidence level.
Resumo:
An exciting unsolved problem in the study of high energy processes of early type stars concerns the physical mechanism for producing X-rays near the Be star gamma Cassiopeiae. By now we know that this source and several ""gamma Cas analogs"" exhibit an unusual hard thermal X-ray spectrum, compared both to normal massive stars and the non-thermal emission of known Be/X-ray binaries. Also, its light curve is variable on almost all conceivable timescales. In this study we reanalyze a high dispersion spectrum obtained by Chandra in 2001 and combine it with the analysis of a new (2004) spectrum and light curve obtained by XMM-Newton. We find that both spectra can be fit well with 3-4 optically thin, thermal components consisting of a hot component having a temperature kT(Q) similar to 12-14 keV, perhaps one with a value of similar to 2.4 keV, and two with well defined values near 0.6 keV and 0.11 keV. We argue that these components arise in discrete (almost monothermal) plasmas. Moreover, they cannot be produced within an integral gas structure or by the cooling of a dominant hot process. Consistent with earlier findings, we also find that the Fe abundance arising from K-shell ions is significantly subsolar and less than the Fe abundance from L-shell ions. We also find novel properties not present in the earlier Chandra spectrum, including a dramatic decrease in the local photoelectric absorption of soft X-rays, a decrease in the strength of the Fe and possibly of the Si K fluorescence features, underpredicted lines in two ions each of Ne and N (suggesting abundances that are similar to 1.5-3x and similar to 4x solar, respectively), and broadening of the strong NeXLy alpha and OVIII Ly alpha lines. In addition, we note certain traits in the gamma Cas spectrum that are different from those of the fairly well studied analog HD110432 - in this sense the stars have different ""personalities."" In particular, for gamma Cas the hot X-ray component remains nearly constant in temperature, and the photoelectric absorption of the X-ray plasmas can change dramatically. As found by previous investigators of gamma Cas, changes in flux, whether occurring slowly or in rapidly evolving flares, are only seldomly accompanied by variations in hardness. Moreover, the light curve can show a ""periodicity"" that is due to the presence of flux minima that recur semiregularly over a few hours, and which can appear again at different epochs.
Resumo:
Natural selection has caused prey species to evolve distinct defensive mechanisms. One of such mechanisms was the evolution of noxious or distasteful chemicals, which have appeared independently in a number of vertebrates and invertebrates. In detailed analyses of arthropod behaviour, scent gland secretions have consistently been shown to be responsible for repelling specific predators. Because using such chemicals is costly, animals with alternative cheaper defences are expected not to release such secretions when alternative options exist. In this study, we sought to determine the defensive mechanisms of the harvestman Discocyrtus invalidus, a heavy bodied species that bears a pair of repugnatorial glands. The spider Enoploctenus cyclothorax was used as the predator, and the cricket Gryllus sp. was used as a control. In a first set of experiments, the harvestmen were preyed upon significantly less than the crickets. In two other experiments, we found that harvestmen did not use their scent gland secretions to deter the predator. Moreover, results of a fourth experiment revealed that these spiders are not repelled by defensive secretions. Discocyrtus invalidus has a thick cuticle on the entire body: scanning electron micrographs revealed that only the mouth, the articulations of appendages and the tips of the legs are not covered by a hard integument. In a fifth experiment, we found that these spiders had difficulty piercing the harvestmen body. This is the first experimental evidence that a chemically defended arachnid does not use its scent gland secretions to repel a much larger predator but instead relies on its heavily built body. (c) 2010 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objective: To provide a detailed description of the nasopharyngeal intubation (NPI) technique and photographs, which should be helpful for those who may need to perform it for treating the airway obstruction in Robin sequence. Design: To describe and illustrate the NPI technique and the necessary considerations for its application. Setting: Hospital de Reabilitacao de Anomalias Craniofacial of University of Sao Paulo, Brazil. Result: The NPI procedure involves the use of a whitish, Portex, number 3.0 or 3.5, silicone tube, introduced 8 cm deep into the infant`s nostril and fixed with Micropore tape. The tube is to be removed at least twice a day for proper hygiene (with running water, detergent, and swabs) and should be changed every 7 days. This procedure is taught to the children`s parents or caretakers by the nurse during hospitalization. Conclusion: The technique is so simple that it can be performed by the parents themselves, allowing continuation of the treatment at home.
Resumo:
High-purity niobium powder can be produced via the hydrogenation and dehydrogenation processes The present work aimed at the effect of temperature and cooling rate conditions on the niobium hydrogenation process using hydrogen gas The hydrogen contents of the materials were evaluated by weight change and chemical analysis X ray diffraction (XRD) was performed to identify and determine the lattice parameters of the formed hydride phases No hydrogenation took place under isothermal conditions only during cooling of the materials Significant hydrogenation occurred in the 500 C and 700 C experiments leading to the formation of a beta NbH(x) single phase material (C) 2010 Elsevier Ltd All rights reserved
Resumo:
In this work, SiC ceramics were liquid phase sintered (LPS), using AIN-Y(2)O(3) as additives, and oxidized at 1400 degrees C in air for up to 120 h. Oxidation was monitored by the weight gain of the samples as function of exposition time and temperature. A parabolic growth of the oxidation layer has been observed and the coefficient of the growth rate has been determined by relating the weight gain and the surface area. The effect of oxidation on strength has been determined by 4-point bending tests. Phase analysis by Xray diffraction and microstructural observation by scanning electron microscopy indicated the formation of a uniform and dense oxidation layer. The elimination of surface flaws and pores and the generation of compressive stresses in the surface resulted in a strength increase of the oxidized samples. (C) 2009 Published by Elsevier Ltd.