991 resultados para HYDROXY COMPOUNDS
Resumo:
Investigations on thin films that started decades back due to scientific curiosity in the properties of a two-dimensional solid, has developed into a leading research field in recent years due to the ever expanding applications of the thin films in the fann of a variety of active and passive microminiaturized components and devices, solar cells, radiation sowces and detectors, magnetic memory devices, interference filters, refection and antireflection coatings etc. [1]. The recent environment and energy resource concerns have aroused an enonnous interest in the study of materials in thin film form suitable for renewable energy sources such as photovoltaic devices. Recognition of the immense potential applications of the chalcopyrites that can fonn homojunctions or heterojunctions for solar cell fabrication has attracted many researchers to extensive and intense research on them. In this thesis, we have started with studies performed on CuInSe, thin films, a technologically well recognized compound belonging to the l•ill-VI family of semiconductors and have riveted on investigations on the preparation and characterization of compoWlds Culn3Se5. Culn5Seg and CuIn7Se12, an interesting group of compounds related to CuInSe2 called Ordered Vacancy Compounds, having promising applications in photovoltaic devices. A pioneering work attempted on preparing and characterizing the compound Culn7Sel2 is detailed in the chapters on OVC's. Investigation on valence band splitting in avc's have also been attempted for the first time and included as the last chapter in the thesis. Some of the salient features of the chalcopyrite c.ompounds are given in the next section .of this introductory chapter.
Resumo:
Solid electrolytes for applications like chemical sensing, energy storage, and conversion have been actively investigated and developed since the early sixties. Although of immense potential, solid state protonic conductors have been ignored in comparison with the great interest that has been shown to other ionic conductors like lithium and silver ion conductors. The non-availability of good, stable protonic conductors could be partly the reason for this situation. Although organic solids are better known for their electrical insulating character, ionic conductors of organic origin constitute a recent addition to the class of ionic conductors. However, detailed studies (N1 such conductors are scarce. Also the last decade has witnessed an unprecedented boom in research on organic "conducting polymers". These newly devised materials show conductivity spanning from insulator to metallic regimes, which can be manipulated by appropriate chemical treatment. They find applications in devices ranging from rechargeable batteries to "smart windows". This thesis mainly deals with the synthesis and investigations on the electrical properties of (i) certain organbc protonic conductors derived from ethylenediamine and (ii) substituted polyanilines
Resumo:
The central theme of this research concerns the study of vibrationally excited molecules. We have used the local mode description of such vibrational states, and this -model has now gained general acceptance. A central feature of the model is the Wloealizafion of vibrational energy. A study of these high—energy localized states provides example, becauseof this localization, overtone spectra, which measure the absorption of T vibrational energy, are extremely sensitive to the properties of X-H bonds. We also use -overtone spectra to study the conformation of molecules, i.e., the relative internal orientation of their bonds. The thesis comprises six chapters
Resumo:
In the pre—laser era it was difficult to believe that the optical properties of a medium depend upon the intensity of the radiation incident on it. The basis for this conclusion is that the electric field strength associated with the conventional light sources used before the advent of lasers was much smaller than (103 V/cm) the field sttrengths of atomic or interatomic fields (2 107 —- 10” V/cm). The radiation with such low intensity is not able to affect atomic fields to the extent of changing optical parameters. The invention of laser in 1960 was a turning point. The high degree of coherence of the laser radiation provides high spatial concentration of optical power. With the availability of the femtosecond lasers it has become possible to get extremely high peak powers 2 1013 W/cmz). At such high fields, the relationship between electric ‘polarization P and the electric field strength E ceases to be linear and several nonlinear effects begin to occur. Nonlinear absorption, a branch of nonlinear optics, refers to the interaction between radiation and matter accompanied by absorption of more than one photon. Nonlinear absorption has acquired great importance after the invention of high power lasers. One of the objectives of the present work is to investigate the nonlinear absorption processes occurring in fullerene, selected organic solvents and laser dyes. Fullerenes and laser dyes were chosen because of their highly nonlinear behaviour. Fullerenes, the most beautiful among molecules, offer fascinating field of research owinglto their significant structural properties. As toluene, benzene and carbon disulphide are themost widely used solvents for fullerenes, it seems important to study the nonlinear properties of these liquids as well. Like fullerenes, laser dyes also possess highly delocalized 7r electrons which are responsible for their nonlinear absorption. Dye lasers were the fulfillment of an experimenter’s pipe dream - to have a laser that is easily tunable over a wide range of wavelengths. A better understandingof the photophysical properties of laser dyes can significantly enhance the development and technology of dye lasers. We studied the nonlinear absorption properties of two rhodamine dyes to have some insight into their nonlinear optical properties.
Resumo:
Oxovanadium(IV/V) complexes of 2-hydroxyacetophenone- 3-hydroxy-2-naphthoylhydrazone (H2L) have been synthesized and characterized. The complexes were characterized by elemental analyses, IR, electronic and EPR spectra. The oxovanadium(V) complex [VOL (OCH3)] is crystallized in two polymorphic forms, denoted by 1a and 1b, with space groups Pn21a and P 1, respectively. Both have distorted square pyramidal structures.
Resumo:
In our study we use a kernel based classification technique, Support Vector Machine Regression for predicting the Melting Point of Drug – like compounds in terms of Topological Descriptors, Topological Charge Indices, Connectivity Indices and 2D Auto Correlations. The Machine Learning model was designed, trained and tested using a dataset of 100 compounds and it was found that an SVMReg model with RBF Kernel could predict the Melting Point with a mean absolute error 15.5854 and Root Mean Squared Error 19.7576
Resumo:
This thesis is divided in to 9 chapters and deals with the modification of TiO2 for various applications include photocatalysis, thermal reaction, photovoltaics and non-linear optics. Chapter 1 involves a brief introduction of the topic of study. An introduction to the applications of modified titania systems in various fields are discussed concisely. Scope and objectives of the present work are also discussed in this chapter. Chapter 2 explains the strategy adopted for the synthesis of metal, nonmetal co-doped TiO2 systems. Hydrothermal technique was employed for the preparation of the co-doped TiO2 system, where Ti[OCH(CH3)2]4, urea and metal nitrates were used as the sources for TiO2, N and metals respectively. In all the co-doped systems, urea to Ti[OCH(CH3)2]4 was taken in a 1:1 molar ratio and varied the concentration of metals. Five different co-doped catalytic systems and for each catalysts, three versions were prepared by varying the concentration of metals. A brief explanation of physico-chemical techniques used for the characterization of the material was also presented in this chapter. This includes X-ray Diffraction (XRD), Raman Spectroscopy, FTIR analysis, Thermo Gravimetric Analysis, Energy Dispersive X-ray Analysis (EDX), Scanning Electron Microscopy(SEM), UV-Visible Diffuse Reflectance Spectroscopy (UV-Vis DRS), Transmission Electron Microscopy (TEM), BET Surface Area Measurements and X-ray Photoelectron Spectroscopy (XPS). Chapter 3 contains the results and discussion of characterization techniques used for analyzing the prepared systems. Characterization is an inevitable part of materials research. Determination of physico-chemical properties of the prepared materials using suitable characterization techniques is very crucial to find its exact field of application. It is clear from the XRD pattern that photocatalytically active anatase phase dominates in the calcined samples with peaks at 2θ values around 25.4°, 38°, 48.1°, 55.2° and 62.7° corresponding to (101), (004), (200), (211) and (204) crystal planes (JCPDS 21-1272) respectively. But in the case of Pr-N-Ti sample, a new peak was observed at 2θ = 30.8° corresponding to the (121) plane of the polymorph brookite. There are no visible peaks corresponding to dopants, which may be due to their low concentration or it is an indication of the better dispersion of impurities in the TiO2. Crystallite size of the sample was calculated from Scherrer equation byusing full width at half maximum (FWHM) of the (101) peak of the anatase phase. Crystallite size of all the co-doped TiO2 was found to be lower than that of bare TiO2 which indicates that the doping of metal ions having higher ionic radius into the lattice of TiO2 causes some lattice distortion which suppress the growth of TiO2 nanoparticles. The structural identity of the prepared system obtained from XRD pattern is further confirmed by Raman spectra measurements. Anatase has six Raman active modes. Band gap of the co-doped system was calculated using Kubelka-Munk equation and that was found to be lower than pure TiO2. Stability of the prepared systems was understood from thermo gravimetric analysis. FT-IR was performed to understand the functional groups as well as to study the surface changes occurred during modification. EDX was used to determine the impurities present in the system. The EDX spectra of all the co-doped samples show signals directly related to the dopants. Spectra of all the co-doped systems contain O and Ti as the main components with low concentrations of doped elements. Morphologies of the prepared systems were obtained from SEM and TEM analysis. Average particle size of the systems was drawn from histogram data. Electronic structures of the samples were identified perfectly from XPS measurements. Chapter 4 describes the photocatalytic degradation of herbicides Atrazine and Metolachlor using metal, non-metal co-doped titania systems. The percentage of degradation was analyzed by HPLC technique. Parameters such as effect of different catalysts, effect of time, effect of catalysts amount and reusability studies were discussed. Chapter 5 deals with the photo-oxidation of some anthracene derivatives by co-doped catalytic systems. These anthracene derivatives come underthe category of polycyclic aromatic hydrocarbons (PAH). Due to the presence of stable benzene rings, most of the PAH show strong inhibition towards biological degradation and the common methods employed for their removal. According to environmental protection agency, most of the PAH are highly toxic in nature. TiO2 photochemistry has been extensively investigated as a method for the catalytic conversion of such organic compounds, highlighting the potential of thereof in the green chemistry. There are actually two methods for the removal of pollutants from the ecosystem. Complete mineralization is the one way to remove pollutants. Conversion of toxic compounds to another compound having toxicity less than the initial starting compound is the second way. Here in this chapter, we are concentrating on the second aspect. The catalysts used were Gd(1wt%)-N-Ti, Pd(1wt%)-N-Ti and Ag(1wt%)-N-Ti. Here we were very successfully converted all the PAH to anthraquinone, a compound having diverse applications in industrial as well as medical fields. Substitution of 10th position of desired PAH by phenyl ring reduces the feasibility of photo reaction and produced 9-hydroxy 9-phenyl anthrone (9H9PA) as an intermediate species. The products were separated and purified by column chromatography using 70:30 hexane/DCM mixtures as the mobile phase and the resultant products were characterized thoroughly by 1H NMR, IR spectroscopy and GCMS analysis. Chapter 6 elucidates the heterogeneous Suzuki coupling reaction by Cu/Pd bimetallic supported on TiO2. Sol-Gel followed by impregnation method was adopted for the synthesis of Cu/Pd-TiO2. The prepared system was characterized by XRD, TG-DTG, SEM, EDX, BET Surface area and XPS. The product was separated and purified by column chromatography using hexane as the mobile phase. Maximum isolated yield of biphenyl of around72% was obtained in DMF using Cu(2wt%)-Pd(4wt%)-Ti as the catalyst. In this reaction, effective solvent, base and catalyst were found to be DMF, K2CO3 and Cu(2wt%)-Pd(4wt%)-Ti respectively. Chapter 7 gives an idea about the photovoltaic (PV) applications of TiO2 based thin films. Due to energy crisis, the whole world is looking for a new sustainable energy source. Harnessing solar energy is one of the most promising ways to tackle this issue. The present dominant photovoltaic (PV) technologies are based on inorganic materials. But the high material, low power conversion efficiency and manufacturing cost limits its popularization. A lot of research has been conducted towards the development of low-cost PV technologies, of which organic photovoltaic (OPV) devices are one of the promising. Here two TiO2 thin films having different thickness were prepared by spin coating technique. The prepared films were characterized by XRD, AFM and conductivity measurements. The thickness of the films was measured by Stylus Profiler. This chapter mainly concentrated on the fabrication of an inverted hetero junction solar cell using conducting polymer MEH-PPV as photo active layer. Here TiO2 was used as the electron transport layer. Thin films of MEH-PPV were also prepared using spin coating technique. Two fullerene derivatives such as PCBM and ICBA were introduced into the device in order to improve the power conversion efficiency. Effective charge transfer between the conducting polymer and ICBA were understood from fluorescence quenching studies. The fabricated Inverted hetero junction exhibited maximum power conversion efficiency of 0.22% with ICBA as the acceptor molecule. Chapter 8 narrates the third order order nonlinear optical properties of bare and noble metal modified TiO2 thin films. Thin films were fabricatedby spray pyrolysis technique. Sol-Gel derived Ti[OCH(CH3)2]4 in CH3CH2OH/CH3COOH was used as the precursor for TiO2. The precursors used for Au, Ag and Pd were the aqueous solutions of HAuCl4, AgNO3 and Pd(NO3)2 respectively. The prepared films were characterized by XRD, SEM and EDX. The nonlinear optical properties of the prepared materials were investigated by Z-Scan technique comprising of Nd-YAG laser (532 nm,7 ns and10 Hz). The non-linear coefficients were obtained by fitting the experimental Z-Scan plot with the theoretical plots. Nonlinear absorption is a phenomenon defined as a nonlinear change (increase or decrease) in absorption with increasing of intensity. This can be mainly divided into two types: saturable absorption (SA) and reverse saturable absorption (RSA). Depending on the pump intensity and on the absorption cross- section at the excitation wavelength, most molecules show non- linear absorption. With increasing intensity, if the excited states show saturation owing to their long lifetimes, the transmission will show SA characteristics. Here absorption decreases with increase of intensity. If, however, the excited state has strong absorption compared with that of the ground state, the transmission will show RSA characteristics. Here in our work most of the materials show SA behavior and some materials exhibited RSA behavior. Both these properties purely depend on the nature of the materials and alignment of energy states within them. Both these SA and RSA have got immense applications in electronic devices. The important results obtained from various studies are presented in chapter 9.
Resumo:
The ability of aroylhydrazones to bind with transition metals is a developing area of research interest and the coordinating properties of hydrazones can be tuned by the appropriate choice of parent aldehyde or ketone and the hydrazide. So in the present work we selected four different aroylhydrazones as principal ligands. Introduction of heterocyclic bases like 1,10-phenanthroline, 2,2′-bipyridine, 3-picoline and pyridine leads to the syntheses of mixed ligand metal chelates which can cause different bonding modes, spectral properties and geometries in coordination compounds. The importance of aroylhydrazones and their complexes in various fields and their interesting coordinating properties stimulate our interest in the investigation of transition metal chelates with four different aroylhydrazones. The aroylhydrazones selected are 4-benzyloxy-2-hydroxybenzaldehyde-4-nitrobenzoylhydrazone dimethylformamide monosolvate, 5-bromo-2-hydroxy-3-methoxybenzaldehyde nicotinoylhydrazone dihydrate methanol monosolvate, 4-diethylamino-2- hydroxybenzaldehyde nicotinoylhydrazone monohydrate and 2-benzoylpyridine- 4-nitrobenzoylhydrazone. The selection of 4-benzyloxy-2-hydroxybenzaldehyde- 4-nitrobenzoylhydrazone was based on the idea of developing ligands having D-π-A general structure, so that the proligand and metal complexes exhibit NLO activity. Hence it is interesting to explore the coordinating capabilities of the synthesized hydrazones and to study the NLO activity of hydrazones and some of the metal complexes.
Resumo:
Durch asymmetrische Doppelbindungsisomerisierung mittels Me-DuPHOS-modifizierter Dihalogen-Nickel-Komplexe als Katalysatorvorstufen lassen sich aus 2-Alkyl-4,7-dihydro-1,3-dioxepinen hochenantiomerenreine 2-Alkyl-4,5-dihydro-1,3-dioxepine erhalten. Ein Ziel dieser Arbeit war es, die bisher noch unbekannte Absolutkonfiguration dieses Verbindungstyps zu bestimmen und darüber hinaus ihre Einsatzfähigkeit in der enantioselektiven organischen Synthese zu untersuchen. Zu diesem Zweck wurden enantiomerenangereichertes 2-Isopropyl- und 2-tert-Butyl-4,5-dihydro-1,3-dioxepin mit m-Chlorperbenzoesäure epoxidiert. Dabei bildeten sich die entsprechenden 3-Chlorbenzoesäure-(2-alkyl-5-hydroxy-1,3-dioxepan-4yl)-ester in hohen Ausbeuten und Diastereoselektivitäten. Von den vier zu erwartenden Diastereomeren wurden jeweils nur zwei mit einer Selektivität von mehr als 95:5 gebildet. Im Fall des 3-Chlorbenzoesäure-(2-isopropyl-5-hydroxy-1,3-dioxepan-4yl)-esters konnte das Haupt-diastereomer kristallin erhalten werden. Durch röntgenspektroskopische Untersuchung war es möglich, die Relativ-Konfiguration dieser Verbindung zu bestimmen. Die Ester lassen sich unter Ringverengung in 2-Alkyl-1,3-dioxan-4-carbaldehyde umlagern. Ausgehend von diesen Carbaldehyden stehen zwei Synthesewege zur Verfügung, welche zu Verbindungen führen deren Absolutkonfiguration bereits bekannt ist. So erhält man durch Reduktion 2-Alkyl-1,3-dioxan-4-yl-methanole, welche sich in 1,2,4-Butantriol überführen lassen. Oxidation ergibt die 2-Alkyl-1,3-dioxan-4-carbonsäuren, aus denen 3-Hydroxytetrahydrofuran-2-on gewonnen werden kann. Messung des Drehwertes dieser beiden literaturbekannten Verbindungen liefert nicht nur Information über deren Enantiomerenreinheit sondern ebenfalls über die Konfiguration ihres Stereozentrums. In Kombination mit der Relativ-Konfiguration des Esters ist somit ein Rückschluss auf die Absolutkonfiguration der eingesetzten 4,5-Dihydro-1,3-dioxepine möglich. Die auf den beschriebenen Wegen gewonnenen Substanzen finden Anwendung in der stereoselektiven organischen Synthese. Löst man die Chlorbenzoesäureester in Dichlormethan und behandelt sie mit wässriger Salzsäure, so entstehen die bicyclischen 2-Alkyltetrahydrofuro[2,3-d][1,3]dioxole. Auch bei diesen Verbindungen konnten hohe Enantio- und Diastereoselektivitäten erzielt werden. Der intermolekular verlaufende Reaktionsmechanismus der Bicyclus-Bildung, welcher unter Abspaltung eines den Alkylrest tragenden Aldehyds und dessen Neuanlagerung unter Ausbildung eines Acetals verläuft, konnte in dieser Arbeit durch ein Kreuzungsexperiment bestätigt werden. Umacetalisierung der Bicyclen liefert 2-Methoxytetrahydrofuran-3-ol, aus dem durch Acetalspaltung Tetrahydrofuran-2,3-diol erhalten wird, das die Halbacetalform der entsprechenden Desoxytetrose darstellt, die auf diese Weise in einer de novo-Synthese hergestellt werden kann.
Resumo:
A set of parametrized equations has been published by Bratsch and Lagowski for calculating thermodynamic properties of the lanthanides, actinides, element 104, and certainrelated elements. Since these equations were applied to element 104, new values for the first four ionization energies and radii of the ions of charge +1, +2, +3, and +4 have been calculated for this element. The parametrized equations are used here with these new values to calculate some thermodynamic properties of element 104.
Resumo:
Aziridine, Stickstoffanaloga der Epoxide, können regio- und stereoselektive Ringöffnungsreaktionen eingehen, wodurch ihnen als „building blocks“ in der Organischen Synthese eine große Bedeutung zukommt. In dieser Arbeit wurden unterschiedliche N-Aminoverbindungen synthetisiert sowie die Anwendungsmöglichkeit dieser Hydrazinderivate als Stickstoffquellen in Aziridinierungen von Olefinen untersucht. In der vorliegenden Dissertation wurde eine neue Methode zur Darstellung von N-Aminosuccinimid entwickelt und die Einsatzmöglichkeit als Stickstoffquelle in Aziridinierungsreaktionen in einer Reihe von Umsetzungen mit funktionalisierten ebenso wie mit nicht-funktionalisierten Olefinen demonstriert. Die ableitbaren Aziridine wurden hierbei in Ausbeuten von bis zu 80 % erhalten. In der Aziridinierungsreaktion von N-Aminosuccinimid mit 4,7-Dihydro-2-isopropyl-1,3-dioxepin resultieren bicyclische Aziridinierungsprodukte, die als endo/exo-Isomere in einem 1:1-Verhältnis anfallen. Es ist in dieser Arbeit gelungen, die Isomere in guten Ausbeuten zu erhalten, sie säulenchromatographisch zu trennen und ihre Konfiguration im festen Zustand mittels Kristallstrukturanalyse eindeutig zu bestimmen. Enantiomerenangereicherte Olefine, wie z. B. in 2-Position alkylsubstituierte 5-Methyl-4H-1,3-dioxine mit Enantiomerenüberschüssen von 92% ee liefern in der Aziridinierung mit N-Aminosuccinimid und Iodosylbenzol ein 4-Methyl-1,3-oxazolidin-4-carbaldehydderivat in einer zweistufigen Reaktion- der Aziridinierung und einer Umlagerung- ein 4-Methyl-1,3-oxazolidin-4-carbaldehydderivat. Für die Diastereoselektivität des Aziridinierungsschrittes wurde 65 % de bestimmt. In einer neuen Synthese über zwei Stufen ausgehend von (+)-3,4-Dimethoxysuccinanhydrid konnte ein chiraler Stickstoffüberträger - (+)-N-Amino-3,4-dimethoxysuccinimid - in Ausbeuten bis zu 86 % synthetisiert. Die Umsetzung dieser optisch aktiven Stickstoffquelle mit einer Vielzahl prochiraler Alkene führt zu diastereomeren Aziridinen in Ausbeuten bis zu 65% und Diastereoselektivitäten von bis zu 66% de. Anhand ausgewählter Verbindungen konnten die Absolutkonfigurationen der Reaktionsprodukte mittels Kristallstrukturanalyse eindeutig geklärt werden.
Resumo:
In this contribution, we present a systematic investigation on a series of spiroquaterphenyl compounds optimised for solid state lasing in the near ultraviolet (UV). Amplified spontaneous emission (ASE) thresholds in the order of 1 μJ/cm2 are obtained in neat (undiluted) films and blends, with emission peaks at 390 1 nm for unsubstituted and meta-substituted quaterphenyls and 400 4 nm for para-ether substituted quaterphenyls. Mixing with a transparent matrix retains a low threshold, shifts the emission to lower wavelengths and allows a better access to modes having their intensity maximum deeper in the film. Chemical design and blending allow an independent tuning of optical and processing properties such as the glass transition.
Resumo:
This study analyzes the linear relationship between climate variables and milk components in Iran by applying bootstrapping to include and assess the uncertainty. The climate parameters, Temperature Humidity Index (THI) and Equivalent Temperature Index (ETI) are computed from the NASA-Modern Era Retrospective-Analysis for Research and Applications (NASA-MERRA) reanalysis (2002–2010). Milk data for fat, protein (measured on fresh matter bases), and milk yield are taken from 936,227 milk records for the same period, using cows fed by natural pasture from April to September. Confidence intervals for the regression model are calculated using the bootstrap technique. This method is applied to the original times series, generating statistically equivalent surrogate samples. As a result, despite the short time data and the related uncertainties, an interesting behavior of the relationships between milk compound and the climate parameters is visible. During spring only, a weak dependency of milk yield and climate variations is obvious, while fat and protein concentrations show reasonable correlations. In summer, milk yield shows a similar level of relationship with ETI, but not with temperature and THI. We suggest this methodology for studies in the field of the impacts of climate change and agriculture, also environment and food with short-term data.
Resumo:
Todas las sustancias están hechas de elementos y compuestos, ó de una mezcla de los dos y su estudio forma parte de la química. Este texto nos permite conocer cómo ésta se desarrolla no sólo en los laboratorios y entre científicos, sino también en fábricas y plantas químicas, y con múltiples aplicaciones: en la fabricación de fibras sintéticas para los tejidos, de explosivos para los fuegos artificiales, de disolventes para las pinturas, de fertilizantes para los cultivos y de medicamentos para tratar enfermedades.