992 resultados para H 800 R425r


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this paper is to investigate the effects of channel surface wettability and temperature gradients on the boiling flow pattern in a single microchannel. The test section consists of a bottom silicon substrate bonded with a top glass cover. Three consecutive parts of an inlet fluid plenum, a central microchannel and an outlet fluid plenum were etched in the silicon substrate. The central microchannel had a width of 800 mu m and a depth of 30 mu m. Acetone liquid was used as the working fluid. High outlet vapor qualities were dealt with here. The flow pattern consists of a fluid triangle (shrinkage of the liquid films) and a connected long liquid rivulet, which is generated in the central microchannel in the timescale of milliseconds. The peculiar flow pattern is formed due to the following reasons: (1) the liquid rivulet tends to have a large contact area with the top hydrophilic channel surface of the glass cover, but a smaller contact area with the bottom silicon hydrophobic surface. (2) The temperature gradient in the chip width direction at the top channel surface of the glass cover not only causes the shrinkage of the liquid films in the central microchannel upstream, but also attracts the liquid rivulet populated near the microchannel centerline. (3) The zigzag pattern is formed due to the competition between the evaporation momentum forces at the vapor-liquid interfaces and the force due to the Marangoni effect. The former causes the rivulet to deviate from the channel centerline and the latter draws the rivulet toward the channel centerline. (4) The temperature gradient along the flow direction in the central microchannel downstream causes the breakup of the rivulet to form isolated droplets there. (5) Liquid stripes inside the upstream fluid triangle were caused by the small capillary number of the liquid film, at which the large surface tension force relative to the viscous force tends to populate the liquid film locally on the top glass cover surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hydrolysis/precipitation behaviors of Al3+, Al-13 and Al-30 under conditions typical for flocculation in water treatment were investigated by studying the particulates' size development, charge characteristics, chemical species and speciation transformation of coagulant hydrolysis precipitates. The optimal pH conditions for hydrolysis precipitates formation for AlCl3, PAC(A113) and PAC(A130) were 6.5-7.5, 8.5-9.5, and 7.5-9.5, respectively. The precipitates' formation rate increased with the increase in dosage, and the relative rates were AlCl3 >> PAC(A130) > PACA113. The precipitates' size increased when the dosage increased from 50 mu M to 200 mu M, but it decreased when the dosage increased to 800 AM. The Zeta potential of coagulant hydrolysis precipitates decreased with the increase in pH for the three coagulants. The isoelectric points of the freshly formed precipitates for AlCl3, PAC(A113) and PAC(A130) were 7.3, 9.6 and 9.2, respectively. The Zeta potentials of AlCl3 hydrolysis precipitates were lower than those of PAC(A113) and PAC(A130) when pH > 5.0. The Zeta potential of PAC(A130) hydrolysis precipitates was higher than that of PACA113 at the acidic side, but lower at the alkaline side. The dosage had no obvious effect on the Zeta potential of hydrolysis precipitates under fixed pH conditions. The increase in Zeta potential with the increase in dosage under uncontrolled pH conditions was due to the pH depression caused by coagulant addition. Al-Ferron research indicated that the hydrolysis precipitates of AlCl3 were composed of amorphous AI(OH)3 precipitates, but those of PACA113 and PACA130 were composed of aggregates of Al-13 and Al-30, respectively. Al3+ was the most un-stable species in coagulants, and its hydrolysis was remarkably influenced by solution pH. Al-13 and Al-30 species were very stable, and solution pH and aging had little effect on the chemical species of their hydrolysis products. The research method involving coagulant hydrolysis precipitates based on Al-Ferron reaction kinetics was studied in detail. The Al species classification based on complex reaction kinetic of hydrolysis precipitates and Ferron reagent was different from that measured in a conventional coagulant assay using the Al--Ferron method. The chemical composition of Al-a, Al-b and Al-c depended on coagulant and solution pH. The Al-b measured in the current case was different from Keggin Al-13, and the high Alb content in the AlCl3 hydrolysis precipitates could not used as testimony that most of the Al3+ Was converted to highly charged Al-13 species during AlCl3 coagulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemical-looping reforming (CLR) is a technology that can be used for partial oxidation and steam reforming of hydrocarbon fuels. It involves the use of a metal oxide as an oxygen carrier, which transfers oxygen from combustion air to the fuel. Composite oxygen carriers of cerium oxide added with Fe, Cu, and Mn oxides were prepared by co-precipitation and investigated in a thermogravimetric analyzer and a fixed-bed reactor using methane as fuel and air as oxidizing gas. It was revealed that the addition of transition-metal oxides into cerium oxide can improve the reactivity of the Ce-based oxygen carrier. The three kinds of mixed oxides showed high CO and H-2 selectivity at above 800 degrees C. As for the Ce-Fe-O oxygen carrier, methane was converted to synthesis gas at a H-2/CO molar ratio close to 2:1 at a temperature of 800-900 degrees C; however, the methane thermolysis reaction was found on Ce-Cu-O and Ce-Mn-O oxygen carriers at 850-900 degrees C. Among the three kinds of oxygen carriers, Ce-Fe-O presented the best performance for methane CLR. On Ce-Fe-O oxygen carriers, the CO and H-2 selectivity decreased as the Fe content increased in the carrier particles. An optimal range of the Ce/Fe molar ratio is Ce/Fe > 1 for Ce-Fe-O oxygen carriers. Scanning electron microscopy (SEM) analysis revealed that the microstructure of the Ce-Fe-O oxides was not dramatically changed before and after 20 cyclic reactions. A small amount of Fe3C was found in the reacted Ce-Fe-O oxides by X-ray diffraction (XRD) analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Condensation of steam in a single microchannel, silicon test section was investigated visually at low flow rates. The microchannel was rectangular in cross-section with a depth of 30 pm, a width of 800 mu m and a length of 5.0 mm, covered with a Pyrex glass to allow for visualization of the bubble formation process. By varying the cooling rate during condensation of the saturated water vapor, it was possible to control the shape, size and frequency of the bubbles formed. At low cooling rates using only natural air convection from the ambient environment, the flow pattern in the microchannel consisted of a nearly stable elongated bubble attached upstream (near the inlet) that pinched off into a train of elliptical bubbles downstream of the elongated bubble. It was observed that these elliptical bubbles were emitted periodically from the tip of the elongated bubble at a high frequency, with smaller size than the channel width. The shape of the emitted bubbles underwent modifications shortly after their generation until finally becoming a stable vertical ellipse, maintaining its shape and size as it flowed downstream at a constant speed. These periodically emitted elliptical bubbles thus formed an ordered bubble sequence (train). At higher cooling rates using chilled water in a copper heat sink attached to the test section, the bubble formation frequency increased significantly while the bubble size decreased, all the while forming a perfect bubble train flowing downstream of the microchannel. The emitted bubbles in this case immediately formed into a circular shape without any further modification after their separation from the elongated bubble upstream. The present study suggests that a method for controlling the size and generation frequency of microbubbles could be so developed, which may be of interest for microfluidic applications. The breakup of the elongated bubble is caused by the large Weber number at the tip of the elongated bubble induced by the maximum vapor velocity at the centerline of the microchannel inside the elongated bubble and the smaller surface tension force of water at the tip of the elongated bubble.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The release of heavy metals from the combustion of hazardous wastes is an environmental issue of increasing concern. The species transformation characteristics of toxic heavy metals and their distribution are considered to be a complex problem of mechanism. The behavior of hazardous dyestuff residue is investigated in a tubular furnace under the general condition of hazardous waste pyrolysis and gasfication. Data interpretation has been aided by parallel theoretical study based on a thermodynamic equilibrium model based on the principle of Gibbs free energy minimization. The results show that Ni, Zn, Mn, and Cr are more enriched in dyestuff residue incineration than other heavy metals (Hg, As, and Se) subjected to volatilization. The thermodynamic model calculation is used for explaining the experiment data at 800 degrees C and analyzing species transformation of heavy metals. These results of species transformation are used to predict the distribution and emission characteristics of trace elements. Although most trace element predictions are validated by the measurements, cautions are in order due to the complexity of incineration systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experimental investigations of nondegenerate ultrabroadband chirped pulse optical parametric amplification have been carried out. The general mathematical expressions for evaluating parametric bandwidth, gain and gain bandwidth for arbitrary three-wave mixing parametric amplifiers are presented. In our experiments, a type-I noncollinear phase-matched optical parametric amplifier based on lithium triborate, which was pumped by a 5-ns second harmonic pulses from a Q-switched Nd:YAG operating at 10 Hz, seeded by a 14-fs Ti:sapphire laser at 800 nm, was presented. The 0.85 nJ energy of input chirped signal pulse with 57-FWHM has been amplified to 3.1 muJ at pump intensity 3 GW/cm(2), the corresponding parametric gain reached 3.6 x 10(3), the 53 nm-FWHM gain spectrum bandwidth of output signal has been obtained. The large gain and broad gain bandwidth, which have been confirmed experimentally, provide great potentials to amplify efficiently the broad bandwidth femtosecond light pulses to generate new extremes in power, intensity, and pulse duration using optical parametric chirped pulse amplifiers pumped by powerful nanosecond systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel neodymium pentafluoropropionate binuclear complex, Nd(C(2)F(5)COO)(3)Dipy (Dipy: 2,2'-dipyridyl), was synthesized and characterized by single-crystal X-ray diffraction. At a concentration of 0.2 M in DMSO-d(6), the Judd-Ofelt parameters (Omega(2), Omega(4), Omega(6)) were calculated from the UV-Vis spectrum. According to the small value of Omega(2) and the zero splitting energy of (4)F/(3/2) level, a symmetric ligand field of the complex was confirmed in DMSO-d(6). Strong emission of the complex in DMSO-d(6) at 1057 nm with a decay time about 1.3 mu s were detected when excited at 800 nm pumped by a laser diode. The stimulated emission cross-section of (4)F(3/2) -> (4)I(11/2) fluorescence transition was 2.36 x 10 (20) cm(2) and comparable with some laser glasses, which indicated good radiative properties of this neodymium pentafluoropropionate binuclear complex in liquid matrix. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

选用9 a生盛果期矮化密植梨枣树为试验材料,研究乙酰丙酸钾叶面喷施对黄土高原山地红枣生长发育及产量品质的影响。结果表明:叶面喷施稀释800倍的乙酰丙酸钾,对枣树的生长发育、产量和品质都有明显的促进作用,建议在黄土高原区红枣实际生产中采用稀释800倍的乙酰丙酸钾喷施。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

降雨侵蚀力是反映流域降雨侵蚀能力的综合指标之一。根据辽河流域10个气象站的日降雨量资料,利用日降雨侵蚀力模型估算辽河流域的降雨侵蚀力。结果表明:辽河流域降雨侵蚀力的空间变异与降雨量的空间分布趋势基本一致,由东南向西北递减,变化于1 000~3 800 MJ.mm/(hm2.h.a)之间;降雨侵蚀力年内集中度高,6—8月3个月约占全年的80%;降雨侵蚀力年际变化大,年际变率Cv在0.367~0.649之间,采用时序系列的Mann-Kendall检验表明,降雨侵蚀力并无显著变化趋势;特别是在流域水土流失严重的西辽河地区,年降雨侵蚀力较小,但年内集中程度大,年际变化更突出。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

以黄土丘陵沟壑第三副区的藉河流域为研究区,根据65个实测点数据,采用普通克里格法、反距离权重法、样条函数法等插值方法,分析了测点数量变化、栅格像元尺寸变化及插值方法的差异对土壤稳定入渗速率空间插值结果的影响,剖析了空间插值中的不确定性。结果表明:(1)参与插值站点越多,所得插值结果不确定性越小;(2)像元尺寸在25~800 m间变化对土壤稳定入渗速率的插值结果影响微弱;(3)不同插值方法对插值结果的精度影响较大,说明插值方法的差异对插值结果的不确定性有较大影响。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本论文对中孔分子筛的合成及其在茂金属催化剂载体、聚乙烯催化降解方面的应用进行了研究,重点研究了有机中孔分子筛的合成、载体表面官能团和骨架结构与组成对乙烯聚合行为、聚乙烯分子链结构参数、聚乙烯催化降解的影响,以及原位聚合中载体的自破碎原理的应用。本论文的主要工作和研究成果总结如下: 1. 制备了胺基中孔分子筛,并在合成过程中发现了添加尿素的效应。通过与相应的没有尿素添加剂合成的胺基中孔分子筛对比发现,合成过程中加入尿素后,胺基中孔分子筛的孔壁厚度增加,孔之间排列的有序度提高,而且随着中孔分子筛中胺基含量的增加,有序度提高程度更明显。论文中给出了尿素对分子筛有序度影响的几个可能因素,即尿素的pH值缓冲作用及其尿素对非离子表面活性剂胶束分散作用。 2. 制备了胺基中孔分子筛、无机中孔分子筛和胺基实心球形二氧化硅,并用于茂金属催化剂的负载化和乙烯聚合实验中,研究了载体表面官能团和结构对聚合物分子量的影响。结果表明,负载在无机中孔分子筛和胺基实心球形二氧化硅上的茂金属催化剂只能得到分子量呈单峰分布的聚乙烯;而负载在胺基中孔分子筛上的茂金属催化剂在铝/锆比小于等于500时能得到分子量呈双峰分布的聚乙烯,当铝锆比大于等于800时只能得到分子量呈单峰分布的聚乙烯。说明在低的铝锆比时,由于载体上胺基和中孔结构的影响,所负载的茂金属催化剂具有两种不同的活性中心,XPS结果与上述推论相符。 3. 提出了聚乙烯回收利用的新途径,即利用原位聚合过程中载体催化剂破碎原理,将中孔分子筛固体酸均匀分布在聚乙烯基体中,从而使得所制备的聚乙烯催化降解产生的气体物质比相同含量下的固体酸/聚乙烯物理混合物的多了许多,固体酸催化降解效率明显提高。所用的固体酸包括HMCM-41、AlMCM-41、中孔SAPO1和SAPO2。 4.通过在纳米二氧化硅水溶胶中进行丙烯酰胺自由基聚合得到二氧化硅/聚丙烯酰胺杂化粉末,其中聚丙烯酰胺覆盖在纳米二氧化硅上得到次级纳米粒子,该纳米粒子疏松地团聚在一起得到大的二氧化硅/聚丙烯酰胺杂化粒子。以此种二氧化硅/聚丙烯酰胺杂化颗粒作为载体负载茂金属催化剂进行乙烯聚合。由于二氧化硅/聚丙烯酰胺是疏松的团聚在一起的,它们很容易通过聚合过程中载体的破碎分散在聚合物中,所以得到的聚合产物为二氧化硅/聚乙烯纳米复合材料。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

目前,国内外对于铕和铽等稀土配合物的可见区发光和应用都有大量研究,但对具有近红外发光(800-1700 nm)性能的稀土配合物的研究还处于起步阶段。由于稀土的近红外发光在光纤通讯、激光系统及诊断学等方面应用具有特殊的优点,越来越引起人们的兴趣和重视。 稀土近红外发光配合物的致命弱点是其光、热和化学稳定性较差,从而限制了其在很多领域的实际应用。而溶胶-凝胶材料和介孔材料具有良好的光、热和化学稳定性,能改善客体分子的结构环境和化学微环境,从而能有效提高客体分子的发光性能。因此,本论文将具有优良近红外发光性能的稀土配合物分别与上述两种基质复合,从实验和理论研究稀土近红外发光杂化材料的性能和应用价值,制备出具有良好稳定性的高效稀土近红外发光杂化材料,以期为光纤通讯、激光等领域提供潜在的候选材料。围绕这一宗旨,开展了如下工作: 通过原位技术分别得到了掺杂和嫁接[Ln(dbm)3phen]化合物(Ln = Er, Nd, Yb)的杂化凝胶材料,Ln-D-P gel和Xerogel-Ln。通过对其近红外发光性能的研究,表明材料中配体能很好的保护稀土离子,并将能量有效的传递给稀土离子。采用Judd-Ofelt理论对所得部分材料进行了光谱分析,基于实验数据和理论分析表明其具有潜在的光放大和激光应用价值。 选择了两种含全氟化烷基链的β-二酮配体HhfthHtfnb,通过功能化的phen-Si配体,将三元配合物[Ln(hfth)3phen] (Ln = Er, Nd, Yb, Sm)和[Pr(tfnb)3phen]成功共价嫁接到介孔MCM-41和SBA-15杂化材料中,得到的衍生材料Ln(hfth)3phen–MCM-41、Pr(tfnb)3phen–MCM-41和Ln(hfth)3phen–SBA-15、Pr(tfnb)3phen–SBA-15都保持了高度有序的介孔p6mm结构,并展现出稀土离子特征的近红外发射。所得稀土配合物功能化的材料的发射光谱能完全覆盖对光通讯极具应用价值的1300-1600nm区域。 通过对Er(dbm)3phen–M41(X, Y) (X = 1~14, Y = 3, 6, 12, 18, 24 h)材料系统的比较研究,选择了X = 12, Y = 6作为合成目标材料的优化参数,通过功能化的phen-Si配体将[Ln(dbm)3phen]配合物共价嫁接于有序介孔MCM-41和SBA-15中(Ln = Er, Nd, Yb),所得两类材料Ln(dbm)3phenM41和Ln(dbm)3phenS15都保持了很好的介孔有序性,并具有良好的近红外发光性能。通过对Ln(dbm)3phenM41和Ln(dbm)3phenS15两类材料发光行为的比较,以及两类材料中稀土离子的含量及孔结构的分析,推出以SBA-15为载体得到的材料在相对发光强度和荧光寿命上,均比以MCM-41为载体的材料有所提高。 通过对8-羟基喹啉配体进行改性,合成了具有双功能的配体Q-Si,继而合成了共价嫁接8-羟基喹啉衍生物的介孔杂化材料Q–SBA-15,其形貌均一,并具有高度有序的介孔p6mm结构。通过配体交换反应,得到了嫁接稀土喹啉配合物的具有近红外发光性能的介孔杂化材料LnQ3–SBA-15 (Ln = Er, Nd, Yb),其仍然保持高度有序的介孔结构,且外形呈现与母体材料Q–SBA-15相似的弯曲圆柱状。激发配体的吸收,LnQ3–SBA-15材料都分别展现出相应稀土离子特征的近红外发射,并详细分析和讨论了所得介孔杂化材料的近红外发光性能。