998 resultados para Ground vibration
Resumo:
A search for a submerged jet ski and the lost limb of its driver involved in a collision with a speedboat was made in a shallow lake in Northern Ireland. The location of both was crucial to establishing events at the time of the accident. Local intelligence suggested both objects were likely to be partially-buried by lacustrine silt. To avoid sediment churning, this required non-invasive, completely non-destructive assessment and mapping of the scene. A MALA RAMAC ground-penetrating radar system (GPR) mounted on floats for surveying from walkways and jetties or placed in a small rubber dinghy for offshore profiling was used. A grid was established and each line surveyed with 100, 200 and 400MHz antennae. In waters over 6m deep GPR data showed the form of the lake floor but excessive ringing occurred in the data. In waters less than 6m deep ringing diminished on both 100 and 200MHz data, the latter displaying the best trade-off between depth penetration and horizontal object resolution. 400MHz data failed to be of use in waters over 2m deep and at these depths showed only limited improvement of image quality compared to 200MHz data. Surface objects such as a wooden walkway caused interference on 200 and 400MHz data when antennae were oriented both normal and parallel to survey direction; this may be a function of the low attenuation of radar waves in freshwater, allowing excellent lateral and vertical radar wave penetration. On 200MHz data the damaged jet-ski was clearly imaged in a location that contradicted the speedboat driver's account of the accident.
Resumo:
Planar metarnaterial Surfaces with negative reflection phase values are proposed as ground planes in a high-gain resonant cavity antenna configuration. The antenna is formed by the metarnaterial ground plane (MGP) and a superimposed metallodielectric electromagnetic band gap (MEBG) array that acts as a partially reflective surface (PRS). A single dipole positioned between the PRS and the ground IS utilised as the excitation. Ray analysis is employed to describe the functioning of the antennas and to qualitatively predict the effect of the MGP oil the antenna performance. By employing MGPs with negative reflection phase values, the planar antenna profile is reduced to subwavelength values (less than lambda/6) whilst maintaining high directivity. Full-wave simulations have been carried out with commercially available software (Microstripes (TM)). The effect of the finite PRS size on the antenna radiation performance (directivity and sidelobe level) is studied. A prototype has been fabricated and tested experimentally in order to validate the predictions.
Resumo:
A planar artificial magnetic conductor (AMC) ground plane is proposed as a means to reduce the profile of a highly directive resonant cavity antenna. The structure is formed by a printed microstrip patch antenna and a superimposed partially reflective surface. The antenna profile is reduced to approximately half by virtue of employing the AMC ground plane. A ray theory model is used to qualitatively describe the functioning of the antenna and theoretically predict the existence of quarter wavelength resonant cavities.
Resumo:
We have measured the two-electron contribution of the ground state energy of helium-like argon ions using an electron beam ion trap (EBIT). A two-dimensional map was measured showing the intensity of x-rays from the trap passing through a krypton-filled absorption cell. The independent axes of this map were electron beam energy and x-ray energy. From this map, we deduced the two-electron contribution of the ground state of helium-like argon. This experimentally determined Value (312.4 +/- 9.5 eV) was found to be in good agreement with our calculated values (about 303.35 eV) and previous calculations of the same quantity. Based on these measurements, we have shown that a ten-day absorption spectroscopy run with a super-EBIT should be sufficient to provide a new benchmark value for the two-electron contribution to the ground state of helium-like krypton. Such a measurement would then constitute a test of quantum electrodynamics to second order.
Resumo:
This article examines the history of social work research within the UK from a perspective of evidence-based practice, as originally advocated in the 1990s. It reviews the progress made to date in relation to the use of experimental studies in the field of children and families, and the reasons why this remains limited. It sets this in the broader context of evidence-based practice and the education and training of qualifying and post-qualifying social workers, including postgraduate training.
Resumo:
There is a growing interest in the use of geophysical methods to aid investigation and monitoring of complex biogeochemical environments, for example delineation of contaminants and microbial activity related to land contamination. We combined geophysical monitoring with chemical and microbiological analysis to create a conceptual biogeochemical model of processes around a contaminant plume within a manufactured gas plant site. Self-potential, induced polarization and electrical resistivity techniques were used to monitor the plume. We propose that an exceptionally strong (>800 mV peak to peak) dipolar SP anomaly represents a microbial fuel cell operating in the subsurface. The electromagnetic and electrical geophysical data delineated a shallow aerobic perched water body containing conductive gasworks waste which acts as the abiotic cathode of microbial fuel cell. This is separated from the plume below by a thin clay layer across the site. Microbiological evidence suggests that degradation of organic contaminants in the plume is dominated by the presence of ammonium and its subsequent degradation. We propose that the degradation of contaminants by microbial communities at the edge of the plume provides a source of electrons and acts as the anode of the fuel cell. We hypothesize that ions and electrons are transferred through the clay layer that was punctured during the trial pitting phase of the investigation. This is inferred to act as an electronic conductor connecting the biologically mediated anode to the abiotic cathode. Integrated electrical geophysical techniques appear well suited to act as rapid, low cost sustainable tools to monitor biodegradation.