970 resultados para Glycerin purification
Resumo:
The increased incidence over the past decade of bloodstream infections (BSIs) caused by gram-positive bacteria, particularly methicillin-resistant Staphylococcus aureus, highlights the critical need for a consistent approach to therapy. However, there is currently no international consensus on the diagnosis and management of gram-positive BSIs. The Clinical Consensus Conference on Gram-Positive Bloodstream Infections was convened as a session at the 9th International Symposium on Modern Concepts in Endocarditis and Cardiovascular Infections held in 2007. Participants discussed various aspects of the practical treatment of patients who present with gram-positive BSI, including therapeutic options for patients with BSIs of undefined origin, the selection of appropriate empirical therapy, and treatment of complicated and uncomplicated BSIs. The opinions of participants about these key issues are reflected in this article.
Resumo:
Since the 1990's, cheating athletes have abused substances to increase their oxygen transport capabilities; among these substances, recombinant EPO is the most well known. Currently, other investigational pharmaceutical products are able to produce an effect similar to EPO but without having chemical structures related to EPO; these are the synthetic erythropoiesis stimulating agents (ESAs). Peginesatide (also known as Hematide?) is being developed by Affymax and Takeda and, if approved by regulatory authorities, could soon be released on the international market. To detect potential athletic abuse of this product and deter athletes who consider cheating, we initiated a collaboration to implement a detection test for anti-doping purposes. Peginesatide is a synthetic, PEGylated, investigational, peptide-based erythropoiesis-stimulating agent that is designed and engineered to stimulate specifically the erythropoietin receptor dimer that governs erythropoiesis. It is undetectable using current anti-doping tests due to its lack of sequence homology to EPO. To detect and deter potential abuse of peginesatide, we initiated an industry/antidoping laboratory collaboration to develop and validate screening and confirmation assays so that they would be available before peginesatide reaches the market. We describe a screening ELISA and a confirmation assay consisting of immune-purification followed by separation with SDS-PAGE and revelation with Western double blotting. Both assays can detect 0.5 ng/mL concentrations of peginesatide in blood samples, enabling detection for several days after administration of a physiologically relevant dose. This initial report describes experimental characterization of these assays, including testing with a blinded set of samples from a clinical study conducted in healthy volunteers.
Resumo:
OBJECTIVES: There is urgent need of a treatment for progressive multifocal leukoencephalopathy (PML), caused by the polyomavirus JC (JCV). To evaluate the rationale for immunotherapy of PML, we explored whether JCV-specific cytotoxic T lymphocytes (CTL) can penetrate the central nervous system (CNS). In addition, we studied the breadth of their T-cell receptor (TCR) repertoire, and sought to establish a reliable method to expand these cells in vitro. DESIGN AND METHODS: We enrolled 18 patients in this study, including 16 with proven or possible PML (15 HIV-positive and one HIV-negative), and two HIV-positive patients with other neurological diseases. Detection of JCV-specific CTL in the blood and the cerebrospinal fluid was performed by Cr release and tetramer staining assays in 15 patients. RESULTS: Of 11 PML patients with analyzable cerebrospinal fluid (CSF), two had no detectable JCV-specific CTL in the blood and CSF and died 3.7 and 7.2 months later. The nine remaining patients had an inactive course of PML and detectable JCV-specific CTL in the blood. In addition, four of them (44%) also had detectable JCV-specific CTL in the CSF. Both HIV-positive patients with OND had detectable JCV-specific CTL in the blood and one in the CSF. Using tetramer technology, we obtained highly enriched JCV-specific CTL lines that were able to kill target cells presenting JCV peptides. The breadth of the TCR repertoire was CTL epitope dependent. CONCLUSIONS: These results indicate that JCV-specific CTL are present in the CNS of PML patients and pave the way for an immune-based therapeutic approach.
Resumo:
The tumor necrosis factor (TNF)/TNF receptor (TNFR) families of ligands and receptors are implicated in a variety of physiological and pathological processes and regulate cellular functions as diverse as proliferation, differentiation, and death. Recombinant forms of these ligands and receptors can act to agonize or antagonize these functions and are therefore useful for laboratory studies and may have clinical applications. A protocol is presented for the expression and purification of dimeric soluble receptors fused to the Fc portion of human IgG1 and of soluble, N-terminally Flag-tagged ligands. Soluble recombinant proteins are easier to handle than membrane-bound proteins and the use of tags greatly facilitates their detection and purification. In addition, some tags may provide enhanced biological activity to the recombinant proteins (mainly by oligomerization and stabilization effects) and facilitate their functional characterization. Expression in bacterial (for selected ligands) and eukaryotic expression systems (for ligands and receptors) was performed using M15 pREP4 bacteria and human embryonic kidney 293 cells, respectively. The yield of purified protein is about 1 mg/liter for the mammalian expression system and several milligrams per liter for the bacterial expression system. Protocols are given for a specific ligand-receptor pair, namely TRAIL (Apo-2L) and TRAIL receptor 2 (DR5), but can be applied to other ligands and receptors of the TNF family.
Resumo:
The modern approach to the development of new chemical entities against complex diseases, especially the neglected endemic diseases such as tuberculosis and malaria, is based on the use of defined molecular targets. Among the advantages, this approach allows (i) the search and identification of lead compounds with defined molecular mechanisms against a defined target (e.g. enzymes from defined pathways), (ii) the analysis of a great number of compounds with a favorable cost/benefit ratio, (iii) the development even in the initial stages of compounds with selective toxicity (the fundamental principle of chemotherapy), (iv) the evaluation of plant extracts as well as of pure substances. The current use of such technology, unfortunately, is concentrated in developed countries, especially in the big pharma. This fact contributes in a significant way to hamper the development of innovative new compounds to treat neglected diseases. The large biodiversity within the territory of Brazil puts the country in a strategic position to develop the rational and sustained exploration of new metabolites of therapeutic value. The extension of the country covers a wide range of climates, soil types, and altitudes, providing a unique set of selective pressures for the adaptation of plant life in these scenarios. Chemical diversity is also driven by these forces, in an attempt to best fit the plant communities to the particular abiotic stresses, fauna, and microbes that co-exist with them. Certain areas of vegetation (Amazonian Forest, Atlantic Forest, Araucaria Forest, Cerrado-Brazilian Savanna, and Caatinga) are rich in species and types of environments to be used to search for natural compounds active against tuberculosis, malaria, and chronic-degenerative diseases. The present review describes some strategies to search for natural compounds, whose choice can be based on ethnobotanical and chemotaxonomical studies, and screen for their ability to bind to immobilized drug targets and to inhibit their activities. Molecular cloning, gene knockout, protein expression and purification, N-terminal sequencing, and mass spectrometry are the methods of choice to provide homogeneous drug targets for immobilization by optimized chemical reactions. Plant extract preparations, fractionation of promising plant extracts, propagation protocols and definition of in planta studies to maximize product yield of plant species producing active compounds have to be performed to provide a continuing supply of bioactive materials. Chemical characterization of natural compounds, determination of mode of action by kinetics and other spectroscopic methods (MS, X-ray, NMR), as well as in vitro and in vivo biological assays, chemical derivatization, and structure-activity relationships have to be carried out to provide a thorough knowledge on which to base the search for natural compounds or their derivatives with biological activity.
Resumo:
The Phytomonas spp. are trypanosomatid parasites of plants. A polar glycolipid fraction of a Phytomonas sp., isolated from the plant Euphorbia characias and grown in culture, was fractionated into four major glycolipid species (Phy 1-4). The glycolipids were analysed by chemical and enzymic modifications, composition and methylation analyses, electrospray mass spectrometry and microsequencing after HNO2 deamination and NaB3H4 reduction. The water-soluble headgroup of the Phy2 glycolipid was also analysed by 1H NMR. All four glycolipids were shown to be glycoinositol-phospholipids (GIPLs) with phosphatidylinositol (PI) moieties containing the fully saturated alkylacylglycerol lipids 1-O-hexadecyl-2-O-palmitoylglycerol and 1-O-hexadecyl-2-O-stearoylglycerol. The structures of the Phy 1-4 GIPLs are: Man alpha 1-2Man alpha 1-6Man alpha 1-4GlcN alpha 1-6PI, Glc alpha 1-2(NH2-CH2CH2-HPO4-)Man alpha 1-2Man alpha 1-6Man alpha 1-4GlcN alpha 1-6PI, [formula: see text] Glc alpha 1-2(NH2CH2CH2-HPO4-)Man alpha 1-2Man alpha 1-6Man alpha 1-4(NH2-CH2CH2-HPO4-)GlcN alpha 1-6PI [formula: see text] and Glc alpha 1-2Glc alpha 1-2(NH2CH2-CH2-HPO4-)Man alpha 1-2Man alpha 1-6Man alpha 1-4(NH2CH2CH2-HPO4-)-GlcN alpha 1-6PI. [formula: see text] The Phytomonas GIPLs represent a novel series of structures. This is the first description of the chemical structure of cell-surface molecules of this plant pathogen. The Phytomonas GIPLs are compared with those of other trypanosomatid parasites and are discussed with respect to trypanosomatid phylogenetic relationships.
Resumo:
The classical minor lymphocyte stimulating (Mls) antigens, which induce a strong primary T cell response in vitro, are closely linked to endogenous copies of mouse mammary tumor viruses (MMTV). Expression of Mls genes leads to clonal deletion of T cell subsets expressing specific T cell receptor (TCR) V beta chains. We describe the isolation and characterization of a new exogenous (infectious) MMTV with biological properties similar to the Mls antigen Mls-1a. In vivo administration of either Mls-1a-expressing B cells or the infectious MMTV (SW) led to an increase of T cells expressing V beta 6 followed by their deletion. Surprisingly, different kinetics of deletion were observed with the exogenous virus depending upon the route of infection. Infection through the mucosa led to a slow deletion of V beta 6+ T cells, whereas deletion was rapid after subcutaneous infection. Sequence analysis of the open reading frames in the 3' long terminal repeat of both this exogenous MMTV (SW) and of Mtv-7 (which is closely linked to Mls-1a) revealed striking similarities, particularly in the COOH terminus, which has been implicated in TCR V beta recognition. The identification of an infectious MMTV with the properties of a strong Mls antigen provides a new, powerful tool to study immunity and tolerance in vivo.
Resumo:
Minor lymphocyte stimulating (Mls) antigens specifically stimulate T cell responses that are restricted to particular T cell receptor (TCR) beta chain variable domains. The Mls phenotype is genetically controlled by an open reading frame (orf) located in the 3' long terminal repeat of mouse mammary tumor virus (MMTV); however, the mechanism of action of the orf gene product is unknown. Whereas predicted orf amino acid sequences show strong overall homology, the 20-30 COOH-terminal residues are strikingly polymorphic. This polymorphic region correlates with TCR V beta specificity. We have generated monoclonal antibodies to a synthetic peptide encompassing the 19 COOH-terminal amino acid residues of Mtv-7 orf, which encodes the Mls-1a determinant. We show here that these antibodies block Mls responses in vitro and can interfere specifically with thymic clonal deletion of Mls-1a reactive V beta 6+ T cells in neonatal mice. Furthermore, the antibodies can inhibit V beta 6+ T cell responses in vivo to an infectious MMTV that shares orf sequence homology and TCR specificity with Mtv-7. These results confirm the predicted extracellular localization of the orf COOH terminus and imply that the orf proteins of both endogenous and exogenous MMTV interact directly with TCR V beta.
Resumo:
The biology, epidemiology, pathogenesis, diagnostic techniques, and history of the introduction of Trypanosoma (Duttonella) vivax in the New World are reviewed. The two main immunological responses of trypanosome-infected animals - antibody production and immunodepression - are discussed in the context of how these responses play a role in disease tolerance or susceptibility. Isolation and purification of T. vivax are briefly discussed. The recent reports of bovine trypanosomiasis diagnosed in cattle on farms located in the Pantanal region of the states of Mato Grosso do Sul and Mato Grosso, Brazil, are also discussed.
Resumo:
Purified fractions from a fetal sheep liver extract (FSLE) were investigated, in a murine model, for induction of leukocyte stimulating activities. The fractions FSLE-1 and FSLE-2 induced splenocyte proliferation in vitro in C57Bl/10ScSn (LPS responder) mice comparable to LPS, and in C57Bl/10ScCr (LPS non responder) mice. They also stimulated the release of nitrogen radicals in bone marrow-derived macrophages (BMDM) from several mouse inbred strains including both C57Bl/10ScSn and C57Bl/10ScCr mice. Stimulation of NO production could be blocked by L-NMMA, an inhibitor of iNOS, and enhanced by the simultaneous addition of IFN-gamma. Moreover, stimulation of macrophages by FSLE-1 and FSLE-2 induced a cytostatic effect of the activated macrophages for Abelson 8-1 tumor cells. The stimulatory activity of the purified fractions is partially due to trace amounts of LPS derived from the fetal liver extract which was enriched during purification. Our results may help to explain the beneficial effect of the extract in patients which has been observed clinically.
Resumo:
Rhoptry-associated protein 2 (RAP2) is known to be discharged from rhoptry onto the membrane surface of infected and uninfected erythrocytes (UEs) ex vivo and in vitro and this information provides new insights into the understanding of the pathology of severe anemia in falciparum malaria. In this study, a hexahistidine-tagged recombinant protein corresponding to residues 5-190 of the N-terminal of Plasmodium falciparum RAP2 (rN-RAP2) was produced using a new method of solubilization and purification. Expression was induced with D-lactose, a less expensive alternative inducer to the more common isopropyl-²-D-thio-galactopyranosidase. The recombinant protein was purified using two types of commercially-available affinity columns, iminodiacetic and nitrilotriacetic. rN-RAP2 had immunogenic potential, since it induced high titers of anti-RAP2 antibodies in mice. These antibodies recognized full-length RAP2 prepared from Triton X-100 extracts from two strains of P. falciparum. In fact, the antibody recognized a 29-kDa product of RAP2 cleavage as well as 82 and 70-kDa products of RAP1 cleavage. These results indicate that the two antigens share sequence epitopes. Our expressed protein fragment was shown to contain a functional epitope that is also present in rhoptry-derived ring surface protein 2 which attaches to the surface of both infected and UEs and erythroid precursor cells in the bone marrow of malaria patients. Serum from malaria patients who developed anemia during infection recognized rN-RAP2, suggesting that this protein fragment may be important for epidemiological studies investigating whether immune responses to RAP2 exacerbate hemolysis in falciparum malaria patients.
Resumo:
Water is a vehicle for disseminating human and veterinary toxoplasmosis due to oocyst contamination. Several outbreaks of toxoplasmosis throughout the world have been related to contaminated drinking water. We have developed a method for the detection of Toxoplasma gondii oocysts in water and we propose a strategy for the detection of multiple waterborne parasites, including Cryptosporidium spp. and Giardia. Water samples were filtered to recover Toxoplasma oocysts and, after the detection of Cryptosporidium oocysts and Giardia cysts by immunofluorescence, as recommended by French norm procedure NF T 90-455, the samples were purified on a sucrose density gradient. Detection of Toxoplasma was based on PCR amplification and mouse inoculation to determine the presence and infectivity of recovered oocysts. After experimental seeding assays, we determined that the PCR assay was more sensitive than the bioassay. This strategy was then applied to 482 environmental water samples collected since 2001. We detected Toxoplasma DNA in 37 environmental samples (7.7%), including public drinking water; however, none of them were positive by bioassay. This strategy efficiently detects Toxoplasma oocysts in water and may be suitable as a public health sentinel method. Alternative methods can be used in conjunction with this one to determine the infectivity of parasites that were detected by molecular methods.
Resumo:
First recognised as "schizonts" of Trypanosoma cruzi, Pneumocystis organisms are now considered as part of an early-diverging lineage of Ascomycetes. As no robust long-term culture model is available, most data on the Pneumocystis cell cycle have stemmed from ultrastructural images of infected mammalian lungs. Although most fungi developing in animals do not complete a sexual cycle in vivo, Pneumocystis species constitute one of a few exceptions. Recently, the molecular identification of several key players in the fungal mating pathway has provided further evidence for the existence of conjugation and meiosis in Pneumocystisorganisms. Dynamic follow-up of stage-to-stage transition as well as studies of stage-specific proteins and/or genes would provide a better understanding of the still hypothetical Pneumocystislife cycle. Although difficult to achieve, stage purification seems a reasonable way forward in the absence of efficient culture systems. This mini-review provides a comprehensive overview of the historical milestones leading to the current knowledge available on the Pneumocystis life cycle.
Resumo:
The positivities of two methods for the diagnosis of localised cutaneous leishmaniasis (CL) were estimated in 280 patients enrolled in a clinical trial. The trial was conducted in an endemic area of Leishmania (Viannia) braziliensis and trial participants were patients with skin ulcers and positive leishmanin skin tests. Patients underwent aspirative skin punctures of the ulcerated lesions and lymph nodes for in vitro cultures, which were processed under field conditions at the local health centre. Skin lesion biopsies were tested at a reference laboratory using kinetoplastid DNA (kDNA)-PCR to detect DNA. The median time required to obtain a positive culture from the skin samples was seven days and the contamination rate of the samples was 1.8%. The positivities of the cultures from skin lesions, kDNA-PCR and the combination of the two methods were 78.2% (95% CI: 73-82.6%), 89.3% (95% CI: 85.1-92.4%) and 97.1% (95% CI: 94.5-98.5%). We conclude that parasite culture is a feasible method for the detection of Leishmania in field conditions and that the combination of culture and PCR has a potential role for the diagnosis of CL in candidates for clinical trials.