982 resultados para Gingival overgrowth


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three sites drilled during Leg 122, Site 761 on the Wombat Plateau and Sites 762 and 763 on the Exmouth Plateau, provide a composite Cretaceous section ranging in age from Berriasian to Maestrichtian. Together, these sites contain an apparently complete, expanded Aptian-Maestrichtian record. Consistently occurring and moderately well-preserved nannofossil assemblages allow reasonably high biostratigraphic resolution. Our data indicate that traditional middle and Upper Cretaceous nannofossil biozonations are not entirely applicable in this region. In this investigation, we compare in detail the relative ranges of key Cretaceous nannofossil markers in the eastern Indian Ocean and in sections from Europe and North Africa. We have determined which previously used events are applicable, and which additional markers have biostratigraphic utility in this region. Significant differences in Campanian-Maestrichtian assemblages exist between the more northern Site 761 and Sites 762 and 763. Such differences are surprising, considering that these sites are only separated by 3° of latitude. We interpret them as marking a strong thermal gradient over the Exmouth Plateau region. Other results include the recovery of an expanded Albian-Cenomanian sequence containing a mixture of Austral and Tethyan floras, which will enable correlation of biozonations established for these two realms; the recovery of two condensed but apparently complete Cenomanian-Turonian boundary sections; correlation of Upper Cretaceous calcareous nannofossil biostratigraphy with magneto- and foraminifer stratigraphy; and correlation of portions of the Barrow Group equivalents to the Berriasian and Valanginian stages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seven sites were drilled off the eastern shore of New Zealand during Ocean Drilling Program Leg 181 to gain knowledge of southwest Pacific ocean history, in particular, the evolution of the Pacific Deep Western Boundary Current (DWBC). Holes 1123C and 1124C penetrated lower Oligocene to middle Eocene sediments containing moderately to poorly preserved calcareous nannofossils. Nannofossil assemblages show signs of dissolution and overgrowth, but key marker species can be identified. Nannofossil abundance ranges from abundant to barren. The lower Oligocene sediments are distinctly separated from the overlying Neogene sequences by the Marshall Paraconformity, a regional marker of environmental and sea level change. An age-depth model for Hole 1123C through this sequence was constructed using nine nannofossil age datums and three magnetostratigraphic datums. There is good agreement between the biostratigraphy and magnetostratigraphy, which indicates that the Marshall Paraconformity spans ~12 m.y. in Hole 1123C. The same sequence in Hole 1124C is disrupted by at least three hiatuses, complicating interpretation of the sedimentation history. The Marshall Paraconformity spans at least 3 m.y. in Hole 1124C. A 4- m.y. gap separates lower Oligocene and middle Eocene sediments, and a ~15 m.y. hiatus separates middle Eocene mudstones from middle Paleocene nannofossil-bearing mudstones. Nannofossil biostratigraphy from Holes 1123C and 1124C indicates that the Eocene-Oligocene transition was a time of fluctuating biota and intensification of the DWBC along the New Zealand margin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Maud Belt in Dronning Maud Land (western East Antarctic Craton) preserves a high-grade polyphase tectono-thermal history with two orogenic episodes of Mesoproterozoic (1.2-1.0 Ga) and Neoproterozoic (0.6-0.5 Ga) age. New SHRIMP U-Pb zircon data from southern Gjelsvikfjella in the northeastern part of the belt make it possible to differentiate between a series of magmatic and metamorphic events. The oldest event recorded is the formation of an extensive 1140-1130 Ma volcanic arc. This was followed by 1104 ± 8 Ma granitoids that might represent, together with so far undated mafic dykes, part of a decompression melting-related bimodal suite that reflects the sub-continental Umkondo igneous event. The first high-grade metamorphism is constrained at 1070 Ma. The metamorphic age data are similar to those obtained from other parts of the Maud Belt, but also from the Namaqua-Natal Belt in South Africa, but the preceding arc formation was diachronous in the two belts. This indicates that the two belts did not form a continuous volcanic arc unit as suggested in previous models, but became connected only at the end of the Mesoproterozoic. Intense reworking during the Neoproterozoic, probably as a result of continent-continent collision between components of Gondwana, is indicated by ductile refliation, further high-grade metamorphic recrystallisation and metamorphic zircon overgrowths at approximately 530 Ma. This was followed by late- to post-tectonic magmatism, reflected by 500 Ma granite bodies and 490 Ma aplite dykes as well as a 480 Ma gabbro body.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxygen and carbon isotopic variability of the dominant (<38 µm) carbonate fraction within bedded, organic-carbon rich Lower Cretaceous sediment intervals from various DSDP sites are closely correlated with preservational changes in the carbonates. Isotopic fluctuations are absent where carbonate contents vary little and where the carbonate fraction is dominated by biogenic phytoplankton remains. Within each of the studied intervals oxygen and carbon isotopic ratios become increasingly more negative in samples with carbonate contents higher than about 60% in which the proportion of diagenetic microcarbonate increases rapidly. Carbon isotopic ratios show a trend towards positive values in samples with carbonate contents of less than 40% and strong signs of dissolution. The taxonomic composition of nannofossil assemblages varies little within single intervals, despite significant differential diagenesis among individual beds; this points towards ecological stability of oceanic surface waters during the deposition of alternating beds. Bedding is, however, closely related to changing bioturbation intensity, indicating repeated fluctuations of the deep-water renewal rates and oxygen supply. Various microbial decomposition processes of organic matter leading to bed-specific differential carbonate diagenesis resulted in an amplification of primary bedding features and are considered responsible for most of the observed fluctuations in the stable isotopic ratios and carbonate contents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During Leg 194, a series of eight sites was drilled through Oligocene-Holocene mixed carbonate and siliciclastic sediments on the Marion Plateau, northeast Australia. The major objective was to constrain the magnitude and timing of sea level changes in the Miocene. Site 1193, located on the Marion Plateau in 348 m of water ~80 km from the south central Great Barrier Reef margin, is probably the most important site for constraining the major middle to late Miocene sea level drop and reconstructing the evolution history of the Marion Plateau during the Miocene (Isern, Anselmetti, Blum, et al., 2002, doi:10.2973/odp.proc.ir.194.2002). However, there is no biostratigraphic or other chronological data for the critical interval between 36 and 211 meters below seafloor (mbsf) (virtually the entire late and middle Miocene) due to poor core recovery and a virtual absence of planktonic microfossils in the core catcher samples examined aboard the ship (Isern, Anselmetti, Blum, et al., 2002, doi:10.2973/odp.proc.ir.194.2002). The main purpose of this report is to refine the shipboard nannofossil biostratigraphy through examination of new samples and more detailed examination of those samples reported on board the ship. This results in a refinement for most of the nannofossil datums and provides some useful age information to fill the critical data gap for the middle Miocene. Previous Neogene nannofossil biostratigraphic studies of the Marion Plateau and Queensland Plateau include Gartner et al. (1993, doi:10.2973/odp.proc.sr.133.213.1993) and Wei and Gartner (1993, doi:10.2973/odp.proc.sr.133.216.1993).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sand detrital modes of Albian-Eocene clastic gravity-flow deposits cored and recovered at Ocean Drilling Program Site 1276 reflect the postrift geologic evolution of the Newfoundland passive continental margin. Cretaceous sandstone compositions (average: Q57F23L20; Ls%Lsc = 35; total%bioclasts = 3) are consistent with a source on Grand Banks such as Avalon Uplift. Their relatively low potassium feldspar (Qm71K8P21) contents distinguish them from Iberian sandstones and appear to preclude an easterly source during the early history of the ocean basin. Isolated volcaniclastic input near the Paleocene/Eocene boundary (~60 Ma) at Site 1276 is also present in Iberian samples of this age, suggesting that magmatism was widespread across the North Atlantic during this time frame; the source(s) of this volcanic debris remains equivocal. In the Eocene, the development of carbonate bank facies on the shelf marks a profound compositional change to calcareous grainstones (average: Q27F11L62; Ls%Lsc = 82; total%bioclasts = 55) in basinal gravity-flow deposits at Site 1276. This calcareous petrofacies is present on the Iberian margin and in the Pyrenees, suggesting that it was a regional event. The production and downslope redistribution of carbonate debris, including bioclastic and lithic fragments, was likely eustatically controlled. The Newfoundland (Site 1276 and Jeanne d'Arc Basin) sandstones are mainly quartzolithic. Their composition and the contrast in composition between them and more quartzofeldspathic sandstones from the Iberian margin are likely a product of rifting along a Paleozoic suture zone separating distinct basement terranes. This prerift geologic setting contrasts with that of rifts developed within other cratonic settings with variable amounts of synrift volcanism. When synthesized, the spectrum of synrift and postrift sand compositions produces a general model of passive margin (rift-to-drift) sandstone provenance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cores from the upper 70 meters below seafloor (mbsf) (upper Pleistocene) at Ocean Drilling Program (ODP) Site 645 in Baffin Bay show dramatic meter-scale changes in color and mineralogy. Below this interval, mineralogical changes are more gradual to the top of the Miocene at about 550 mbsf. The Pliocene-Pleistocene section can be divided into five facies: Facies 1 - massive, poorly sorted, gravel-bearing muds; Facies 2 - gray silty clays and silty muds; Facies 3 - laminated detricarbonate silty muds; Facies 4 - silty sand and sandy silt; and Facies 5 - poorly sorted muddy sands and silty muds. Facies 4 and 5 are restricted to the Pliocene section below depths of about 275 mbsf. The mineralogical/color cycles in the upper 70 mbsf are the result of alternations between Facies 2 and three lithotypes of Facies 1: lithotype A - tan-colored, carbonate-rich, gravel-bearing mud; lithotype B - weak, red-colored, gravel-bearing mud rich in sedimentary rock fragments; and lithotype C - gray, gravel-bearing mud. A fourth lithotype, D, is restricted to depths of 168-275 mbsf and is dark gray, carbonate-poor, gravel-bearing mud. We believe that all lithotypes of Facies 1 and the sand and gravel fractions of Facies 2 and 3 were deposited by ice rafting. Depositional processes for Facies 4 and 5 probably include ice rafting and bottom- and turbidity-current transport. Data from petrographic analyses of light and heavy sand-sized grains and X-ray analyses of silt- and clay-size fractions suggest that tan-colored sediments (lithotype A of Facies 1; Facies 3) were derived mainly from Paleozoic carbonates of Ellesmere, Devon, and northern Baffin islands. Weak red sediments (lithotype B) contain significant red sedimentary clasts, reworked quartzarenite grains and clasts, and rounded colorless garnets, all derived from Proterozoic sequences of the Borden and Thule basins, and from minor Mesozoic red beds. Other sediments in the upper 335 mbsf at Site 645 contain detritus from a heterogeneous mixture of sources, including Precambrian shield terranes around Baffin Bay. Sediments from 335 to 550 mbsf (Facies 5) are rich in friable sedimentary clasts and detrital micas and contain glauconite and, in a few samples, reworked diatoms. These components suggest derivation from poorly consolidated Mesozoic-Tertiary sediments in coastal outcrops and beneath the modern shelves of northeastern Baffin Island and western Greenland. For the upper Pleistocene section (about 0-100 mbsf), marked mineralogical cyclicity is attributed to fluctuating glacial margins, calving rates, and iceberg melting rates, particularly around the northern end of Baffin Bay. Tan-colored, carbonate-rich units were derived at times of maximum advance of glaciers on Ellesmere and Devon islands, during relatively warm intervals induced by incursion of warm Atlantic surface water into the bay. At the beginning of these warmer episodes, most icebergs were contributed by glaciers near sea level around the Arctic channels, which resulted in deposition of weak red, ice-rafted units rich in Proterozoic sedimentary clasts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During Leg 43, six holes (Sites 382-387) were drilled in the western part of the North Atlantic Ocean; locations of sites are shown in Figure 1. Lower Cretaceous to Quaternary calcareous nannofossils were found in 127 of 189 cores recovered during the leg. The ages and zonal assignments of these fossiliferous cores based upon light-microscopical observation are given in Table 1. An almost continuous succession of nannofossil assemblages of the lower Maestrichtian to upper Paleocene is present at Site 384. A detailed investigation was conducted on samples at this site, and the evolution of approximately 50 species is documented through almost the entire Paleocene epoch.