963 resultados para Genes, erbB-2 -- genetics
Resumo:
植物通过异戊二烯代谢途径合成多种具有生物活性和功能的三萜及甾醇类化合物,它们在调节植物生长发育、维持膜的完整和功能、抵抗病原微生物侵染中发挥着重要的作用。2,3-氧化鲨烯为三萜和甾醇合成途径的分枝点,参与这一关键步骤的酶被通称为2,3-氧化鲨烯环化酶(OSCs)。本研究系统分了水稻基因组中全部11个OSC基因序列,发现其中四个可能为假基因。亚种间非同义替换率Ka和同义替换率Ks的比值(Ka/Ks)以及进化树的分析表明OsOSC8是单子叶植物特有的功能保守基因,而OsOSC9在水稻两个亚种间发生了功能快速进化,这种快速进化的基因往往参与植物和病原菌相互作用的代谢途径。 根据基因结构、表达谱以及与其它植物已知功能的OSC酶氨基酸序列的比对推测OsOSC3可能具有环阿屯醇合成酶的功能,参与植物甾醇的合成,而OsOSC7、OsOSC10和OsOSC11可能具有β-香树素合成酶的功能,其余OSCs可能参与合成其它三萜化合物。为了进一步分析和验证OSCs酶的功能,将水稻7个OSC基因的开放阅读框(ORF)构建到酵母表达载体并在pichia酵母中表达,发现仅有OsOSC9和OsOSC12能够将酵母内源的2,3-氧化鲨烯分别环化为四环三萜化合物Parkeol和植物中稀有的五环三萜化合物Isoarborinol,目前还未在其它植物中发现参与这两种三萜化合物的基因。另外,水稻所有的OSC基因均不能互补酵母羊毛甾醇缺陷型菌株,表明水稻OSCs不具有合成羊毛甾醇的功能。 RNAi沉默以及启动子融合GUS的表达实验发现OsOSC8可能参与花粉的发育,该基因的下调影响水稻的育性,暗示水稻中存在一个可能与雄性不育有关的三萜代谢途径。水稻其它OSC基因RNAi植株可能在逆境环境和病原菌侵染下才会显现出表型。
Resumo:
Amphioxus is a crucial organism for the study of vertebrate evolution. Although a genomic BAC library of Branchiostoma floridae has been constructed, we report here another BAC library construction of its distant relative species Branchiostoma belcheri. The amphioxus BAC library established in present study consists of 45,312 clones arrayed in one hundred and eighteen 384-well plates. The average insert fragment size was 120 kb estimated by Pulsed Field Gel Electrophoresis (PFGE) analysis of 318 randomly selected clones. The representation of the library is about 12 equivalent to the genome, allowing a 99.9995% probability of recovering any specific sequence of interest. We further screened the library with 4 single copied Amphi-Pax genes and identified total of 26 positive clones with average of 6.5 clones for each gene. The result indicates this library is well suited for many applications and should also serve as a useful complemental resource for the scientific community.
Resumo:
Comparative genetic analysis between human and chimpanzee may detect genetic divergences responsible for human-specific characteristics. Previous studies have identified a series of genes that potentially underwent Darwinian positive selection during huma
Resumo:
The difference in cognitive skills between humans and nonhuman primates is one of the major characters that define our own species. It was previously hypothesized that this divergence might be attributable to genetic differences at gene expression level,
Resumo:
As an endangered animal group, musk deer (genus Moschus) are not only a great concern of wildlife conservation, but also of special interest to evolutionary studies due to long-standing arguments on the taxonomic and phylogenetic associations in this group. Using museum samples, we sequenced complete mitochondrial cytochrome b genes (1140 bp) of all suggested species of musk deer in order to reconstruct their phylogenetic history through molecular information. Our results showed that the cytochrome b gene tree is rather robust and concurred for all the algorithms employed (parsimony, maximum likelihood, and distance methods). Further, the relative rate test indicated a constant sequence substitution rate among all the species, permitting the dating of divergence events by molecular clock. According to the molecular topology, M. moschiferus branched off the earliest from a common ancestor of musk deer (about 700,000 years ago); then followed the bifurcation forming the M. berezouskii lineage and the lineage clustering M. fuscus, M. chrysogaster, and M. leucogaster (around 370,000 years before present), interestingly the most recent speciation event in musk deer happened rather recently (140,000 years ago), which might have resulted from the diversified habitats and geographic barriers in southwest China caused by gigantic movements of the Qinghai-Tibetan Plateau in history. Combining the data of current distributions, fossil records, and molecular data of this study, we suggest that the historical dispersion of musk deer might be from north to south in China. Additionally, in our further analyses involving other pecora species, musk deer was strongly supported as a monophyletic group and a valid family in Artiodactyla, closely related to Cervidae. (C) 1999 Academic Press.
Resumo:
The origin of new exons is an important mechanism for proteome diversity. Here, we report the recurrent origination of new exons in mammalian chromodomain Y-like (CDYL) genes and the functional consequences associated with the acquisition of the new exons
Resumo:
The BRUNOL/CELF family of RNA-binding proteins plays important roles in post-transcriptional regulation and has been implicated in several developmental processes. In this study, we describe the cloning and expression patterns of five Brunol genes in Xenopus laevis. Among them, only Brunol2 is maternally expressed and the zygotic expression of the other four Brunol genes starts at different developmental stages. During Xenopus development, Brunol1, 4-5 are exclusively expressed in the nervous system including domains in the brain, spinal cord, optic and otic vesicles. Brunol2 and 3 are expressed in both the somatic mesoderm and the nervous system. Brunol2 is also extensively expressed in the lens. In transfected Hela cells, BRUNOL1, 2 and 3 proteins are localized in both the cytoplasm and the nucleus, while BRUNOL4 and 5 are only present in the cytoplasm, indicating their different functions.
Resumo:
Cytosine DNA methylation protects eukaryotic genomes by silencing transposons and harmful DNAs, but also regulates gene expression during normal development. Loss of CG methylation in the Arabidopsis thaliana met1 and ddm1 mutants causes varied and stochastic developmental defects that are often inherited independently of the original met1 or ddm1 mutation. Loss of non-CG methylation in plants with combined mutations in the DRM and CMT3 genes also causes a suite of developmental defects. We show here that the pleiotropic developmental defects of drm1 drm2 cmt3 triple mutant plants are fully recessive, and unlike phenotypes caused by met1 and ddm1, are not inherited independently of the drm and cmt3 mutations. Developmental phenotypes are also reversed when drm1 drm2 cmt3 plants are transformed with DRM2 or CMT3, implying that non-CG DNA methylation is efficiently re-established by sequence-specific signals. We provide evidence that these signals include RNA silencing though the 24-nucleotide short interfering RNA (siRNA) pathway as well as histone H3K9 methylation, both of which converge on the putative chromatin-remodeling protein DRD1. These signals act in at least three partially intersecting pathways that control the locus-specific patterning of non-CG methylation by the DRM2 and CMT3 methyltransferases. Our results suggest that non-CG DNA methylation that is inherited via a network of persistent targeting signals has been co-opted to regulate developmentally important genes. © 2006 Chan et al.
Resumo:
The chemokine receptor CCR5 can serve as a coreceptor for M-tropic HIV-1 infection and both M-tropic and T-tropic SIV infection. We sequenced the entire CCR5 gene from 10 nonhuman primates: Pongo pygmaeus, Hylobates leucogenys, Trachypithecus francoisi, Trachypithecus phayrei, Pygathrix nemaeus, Rhinopithecus roxellanae, Rhinopithecus bieti, Rhinopithecus avunculus, Macaca assamensis, and Macaca arctoides. When compared with CCR5 sequences from humans and other primates, our results demonstrate that:(1) nucleotide and amino acid sequences of CCR5 among primates are highly homologous, with variations slightly concentrated on the amino and carboxyl termini; and (2) site Asp13, which is critical for CD4-independent binding of SIV gp120 to Macaca mulatta CCR5, was also present in all other nonhuman primates tested here, suggesting that those nonhuman primate CCR5s might also bind SIV gp120 without the presence of CD4. The topologies of CCR5 gene trees constructed here conflict with the putative opinion that the snub-nosed langurs compose a monophyletic group, suggesting that the CCR5 gene may not be a good genetic marker for low-level phylogenetic analysis. The evolutionary rate of CCR5 was calculated, and our results suggest a slowdown in primates after they diverged from rodents. The synonymous mutation rate of CCR5 in primates is constant, about 1.1 x 10(-9) synonymous mutations per site per year. Comparisons of K-a and K-s suggest that the CCR5 genes have undergone negative or purifying selection. K-a/K-s ratios from cercopithecines and colobines are significantly different, implying that selective pressures have played different roles in the two lineages.
Resumo:
The diversity and evolution of bitter taste perception in mammals is not well understood. Recent discoveries of bitter taste receptor (T2R) genes provide an opportunity for a genetic approach to this question. We here report the identification of 10 and 30 putative T2R genes from the draft human and mouse genome sequences, respectively, in addition to the 23 and 6 previously known T2R genes from the two species. A phylogenetic analysis of the T2R genes suggests that they can be classified into three main groups, which are designated A, B, and C. Interestingly, while the one-to-one gene orthology between the human and mouse is common to group B and C genes, group A genes show a pattern of species- or lineage-specific duplication. It is possible that group B and C genes are necessary for detecting bitter tastants common to both humans and mice, whereas group A genes are used for species-specific bitter tastants. The analysis also reveals that phylogenetically closely related T2R genes are close in their chromosomal locations, demonstrating tandem gene duplication as the primary source of new T2Rs. For closely related paralogous genes, a rate of nonsynonymous nucleotide substitution significantly higher than the rate of synonymous substitution was observed in the extracellular regions of T2Rs, which are presumably involved in tastant-binding. This suggests the role of positive selection in the diversification of newly duplicated T2R genes. Because many natural poisonous substances are bitter, we conjecture that the mammalian T2R genes are under diversifying selection for the ability to recognize a diverse array of poisons that the organisms may encounter in exploring new habitats and diets.
Resumo:
Phylogenetic relationships among 37 living species of order Carnivora spanning a relatively broad range of divergence times and taxonomic levels were examined using nuclear sequence data from exon1 of the IRBP gene (approximate to1.3 kb) and first intron
Resumo:
The taxomic classification and phylogenetic relationships within the bear family remain argumentative subjects in recent years. Prior investigation has been concentrated on the application of different mitochondrial (mt) sequence data, herein we employ tw