945 resultados para Generalized Derivation
Resumo:
In the presented work the problem of generalized natural environment model of emergency monitoring is presented. The approach, based on using CASE-based technologies is proposed for methodology development in solving this problem. Usage of CASE-based technology and knowledge databases allow for quick and interactive monitoring of current natural environment state and allow to develop adequate model for just-in- time possible emergency modeling.
Resumo:
A generalized convolution with a weight function for the Fourier cosine and sine transforms is introduced. Its properties and applications to solving a system of integral equations are considered.
Resumo:
Mathematics Subject Classification: 42B35, 35L35, 35K35
Resumo:
Mathematics Subject Classification: 26A16, 26A33, 46E15.
Resumo:
Mathematics Subject Classification: 26A33, 33C20.
Resumo:
Mathematics Subject Classification: 33E12, 33FXX PACS (Physics Abstracts Classification Scheme): 02.30.Gp, 02.60.Gf
Resumo:
Mathematics Subject Classification: 26A33, 33E12, 33C20.
Resumo:
2000 Mathematics Subject Classification: 26A33, 33C20
Resumo:
2000 Mathematics Subject Classification: 35E45
Resumo:
Mathematics Subject Classification: 30B10, 30B30; 33C10, 33C20
Resumo:
Mathematics Subject Classification: Primary 33E20, 44A10; Secondary 33C10, 33C20, 44A20
Resumo:
Mathematics Subject Classification: 33C05, 33C10, 33C20, 33C60, 33E12, 33E20, 40A30
Resumo:
A generalized Drucker–Prager (GD–P) viscoplastic yield surface model was developed and validated for asphalt concrete. The GD–P model was formulated based on fabric tensor modified stresses to consider the material inherent anisotropy. A smooth and convex octahedral yield surface function was developed in the GD–P model to characterize the full range of the internal friction angles from 0° to 90°. In contrast, the existing Extended Drucker–Prager (ED–P) was demonstrated to be applicable only for a material that has an internal friction angle less than 22°. Laboratory tests were performed to evaluate the anisotropic effect and to validate the GD–P model. Results indicated that (1) the yield stresses of an isotropic yield surface model are greater in compression and less in extension than that of an anisotropic model, which can result in an under-prediction of the viscoplastic deformation; and (2) the yield stresses predicted by the GD–P model matched well with the experimental results of the octahedral shear strength tests at different normal and confining stresses. By contrast, the ED–P model over-predicted the octahedral yield stresses, which can lead to an under-prediction of the permanent deformation. In summary, the rutting depth of an asphalt pavement would be underestimated without considering anisotropy and convexity of the yield surface for asphalt concrete. The proposed GD–P model was demonstrated to be capable of overcoming these limitations of the existing yield surface models for the asphalt concrete.
Resumo:
2000 Mathematics Subject Classification: Primary 46F25, 26A33; Secondary: 46G20
Resumo:
Mathematics Subject Classification: 33D60, 33D90, 26A33