966 resultados para Gastropod shells
Resumo:
Sclerochronological records of interannual shell growth variability were established for eight modern shells (26 to 163 years of age) of the bivalve Arctica islandica, which were sampled at one site in the inner German Bight. The records indicate generally low synchrony between individuals. Spectral analysis of the whole 163-yr masterchronology indicated a cyclic pattern with a period of 5 and 7 years. The masterchronology correlated poorly to time series of environmental parameters over the last 90 years. High environmental variability in time and space of the dynamic and complex German Bight hydrographic system results in an extraordinarily high noise' level in the shell growth pattern of Arctica islandica.
Resumo:
Tests of the planktonic foraminifer Globigerinoides ruber (white; d'Orbigny) have become a standard tool for reconstructing past oceanic environments. Paleoceanographers often utilize the Mg/Ca ratios of the foraminiferal tests for reconstructing low-latitude ocean glacial-interglacial changes in sea surface temperatures (SST). We report herein a comparison of Mg/Ca measurements on sample pairs (n = 20) of two G. ruber (white) morphotypes (G. ruber sensu stricto (s.s.) and G. ruber sensu lato (s.l.)) from surface and downcore samples of the western Pacific and Indian Oceans. G. ruber s.s. refers to specimens with spherical chambers sitting symmetrically over previous sutures with a wide, high arched aperture, whereas G. ruber s.l. refers to a more compact test with a diminutive final chamber and small aperture. The G. ruber s.s. specimens generally show significantly higher Mg/Ca ratios compared to G. ruber s.l. Our results from the Mg/Ca ratio analysis suggest that G. ruber s.l. specimens precipitated their shells in slightly colder surface waters than G. ruber s.s. specimens. This conclusion is supported by the differences in delta18O and delta13C values between the two morphotypes. Although it is still unclear if these two morphotypes represent phenotypic variants or sibling species, our findings seem to support the hypothesis of depth and/or seasonal allopatry within a single morphospecies.
Resumo:
In the Persian Gulf and the Gulf of Oman marl forms the primary sediment cover, particularly on the Iranian side. A detailed quantitative description of the sediment components > 63 µ has been attempted in order to establish the regional distribution of the most important constituents as well as the criteria governing marl sedimentation in general. During the course of the analysis, the sand fraction from about 160 bottom-surface samples was split into 5 phi° fractions and 500 to 800 grains were counted in each individual fraction. The grains were cataloged in up to 40 grain type catagories. The gravel fraction was counted separately and the values calculated as weight percent. Basic for understanding the mode of formation of the marl sediment is the "rule" of independent availability of component groups. It states that the sedimentation of different component groups takes place independently, and that variation in the quantity of one component is independent of the presence or absence of other components. This means, for example, that different grain size spectrums are not necessarily developed through transport sorting. In the Persian Gulf they are more likely the result of differences in the amount of clay-rich fine sediment brought in to the restricted mouth areas of the Iranian rivers. These local increases in clayey sediment dilute the autochthonous, for the most part carbonate, coarse fraction. This also explains the frequent facies changes from carbonate to clayey marl. The main constituent groups of the coarse fraction are faecal pellets and lumps, the non carbonate mineral components, the Pleistocene relict sediment, the benthonic biogene components and the plankton. Faecal pellets and lumps are formed through grain size transformation of fine sediment. Higher percentages of these components can be correlated to large amounts of fine sediment and organic C. No discernable change takes place in carbonate minerals as a result of digestion and faecal pellet formation. The non-carbonate sand components originate from several unrelated sources and can be distinguished by their different grain size spectrum; as well as by other characteristics. The Iranian rivers supply the greatest amounts (well sorted fine sand). Their quantitative variations can be used to trace fine sediment transport directions. Similar mineral maxima in the sediment of the Gulf of Oman mark the path of the Persian Gulf outflow water. Far out from the coast, the basin bottoms in places contain abundant relict minerals (poorly sorted medium sand) and localized areas of reworked salt dome material (medium sand to gravel). Wind transport produces only a minimal "background value" of mineral components (very fine sand). Biogenic and non-biogenic relict sediments can be placed in separate component groups with the help of several petrographic criteria. Part of the relict sediment (well sorted fine sand) is allochthonous and was derived from the terrigenous sediment of river mouths. The main part (coarse, poorly sorted sediment), however, was derived from the late Pleistocene and forms a quasi-autochthonous cover over wide areas which receive little recent sedimentation. Bioturbation results in a mixing of the relict sediment with the overlying younger sediment. Resulting vertical sediment displacement of more than 2.5 m has been observed. This vertical mixing of relict sediment is also partially responsible for the present day grain size anomalies (coarse sediment in deep water) found in the Persian Gulf. The mainly aragonitic components forming the relict sediment show a finely subdivided facies pattern reflecting the paleogeography of carbonate tidal flats dating from the post Pleistocene transgression. Standstill periods are reflected at 110 -125m (shelf break), 64-61 m and 53-41 m (e.g. coare grained quartz and oolite concentrations), and at 25-30m. Comparing these depths to similar occurrences on other shelf regions (e. g. Timor Sea) leads to the conclusion that at this time minimal tectonic activity was taking place in the Persian Gulf. The Pleistocene climate, as evidenced by the absence of Iranian river sediment, was probably drier than the present day Persian Gulf climate. Foremost among the benthonic biogene components are the foraminifera and mollusks. When a ratio is set up between the two, it can be seen that each group is very sensitive to bottom type, i.e., the production of benthonic mollusca increases when a stable (hard) bottom is present whereas the foraminifera favour a soft bottom. In this way, regardless of the grain size, areas with high and low rates of recent sedimentation can be sharply defined. The almost complete absence of mollusks in water deeper than 200 to 300 m gives a rough sedimentologic water depth indicator. The sum of the benthonic foraminifera and mollusca was used as a relative constant reference value for the investigation of many other sediment components. The ratio between arenaceous foraminifera and those with carbonate shells shows a direct relationship to the amount of coarse grained material in the sediment as the frequence of arenaceous foraminifera depends heavily on the availability of sand grains. The nearness of "open" coasts (Iranian river mouths) is directly reflected in the high percentage of plant remains, and indirectly by the increased numbers of ostracods and vertebrates. Plant fragments do not reach their ultimate point of deposition in a free swimming state, but are transported along with the remainder of the terrigenous fine sediment. The echinoderms (mainly echinoids in the West Basin and ophiuroids in the Central Basin) attain their maximum development at the greatest depth reached by the action of the largest waves. This depth varies, depending on the exposure of the slope to the waves, between 12 to 14 and 30 to 35 m. Corals and bryozoans have proved to be good indicators of stable unchanging bottom conditions. Although bryozoans and alcyonarian spiculae are independent of water depth, scleractinians thrive only above 25 to 30 m. The beginning of recent reef growth (restricted by low winter temperatures) was seen only in one single area - on a shoal under 16 m of water. The coarse plankton fraction was studied primarily through the use of a plankton-benthos ratio. The increase in planktonic foraminifera with increasing water depth is here heavily masked by the "Adjacent sea effect" of the Persian Gulf: for the most part the foraminifera have drifted in from the Gulf of Oman. In contrast, the planktonic mollusks are able to colonize the entire Persian Gulf water body. Their amount in the plankton-benthos ratio always increases with water depth and thereby gives a reliable picture of local water depth variations. This holds true to a depth of around 400 m (corresponding to 80-90 % plankton). This water depth effect can be removed by graphical analysis, allowing the percentage of planktonic mollusks per total sample to be used as a reference base for relative sedimentation rate (sedimentation index). These values vary between 1 and > 1000 and thereby agree well with all the other lines of evidence. The "pteropod ooze" facies is then markedly dependent on the sedimentation rate and can theoretically develop at any depth greater than 65 m (proven at 80 m). It should certainly no longer be thought of as "deep sea" sediment. Based on the component distribution diagrams, grain size and carbonate content, the sediments of the Persian Gulf and the Gulf of Oman can be grouped into 5 provisional facies divisions (Chapt.19). Particularly noteworthy among these are first, the fine grained clayey marl facies occupying the 9 narrow outflow areas of rivers, and second, the coarse grained, high-carbonate marl facies rich in relict sediment which covers wide sediment-poor areas of the basin bottoms. Sediment transport is for the most part restricted to grain sizes < 150 µ and in shallow water is largely coast-parallel due to wave action at times supplemented by tidal currents. Below the wave base gravity transport prevails. The only current capable of moving sediment is the Persian Gulf outflow water in the Gulf of Oman.
Resumo:
A high-resolution multiproxy geochemical approach was applied to the sediments of Laguna Potrok Aike in an attempt to reconstruct moist and dry periods during the past 16 000 years in southeastern Patagonia. The age-depth model is inferred from AMS 14C dates and tephrochronology, and suggests moist conditions during the Lateglacial and early Holocene (16 000-8700 cal. BP) interrupted by drier conditions before the beginning of the Holocene (13 200-11 400 cal. BP). Data also imply that this period was a major warm phase in southeastern Patagonia and was approximately contemporaneous with the Younger Dryas chronozone in the Northern Hemisphere (12 700-11 500 cal. BP). After 8650 cal. BP a major drought may have caused the lowest lake level of the record. Since 7300 cal. BP, the lake level rose and was variable until the 'Little Ice Age', which was the dominant humid period after 8650 cal. BP.
Resumo:
On the Vietnam Shelf more than 1000 miles of shallow high-resolution seismics were analyzed to unravel post-glacial evolution in a tropical, siliciclastic environment together with 25 sediment cores from water depths between 21 and 169 m to determine stratigraphy, distribution and style of sedimentation. Fourty-seven samples were dated with the AMS-14C technique. The shelf was grouped into three regions: a southern part, a central part, and a northern part. On the broad Southern Shelf, sedimentation is influenced by the Mekong River, which drains into the SCS in this area. Here, incised valley fills are abundant that were cut into the late Pleistocene land surface by the Paleo-Mekong River during times of sea level lowstand. Those valleys are filled with transgressive deposits. The Holocene sedimentation rate in this low gradient accommodation-dominated depositional system is in the range of 5-10 and 25-40 cm/ky at locations sheltered from currents. The Central Shelf is narrow and the sedimentary strata are conformable. Here, numerous small mountainous rivers reach the SCS and transport large amounts of detrital sediment onto the shelf. Therefore, the Holocene sedimentation rate is high with values of 50-100 cm/ky in this supply-dominated depositional system. The broad Northern Shelf in the vicinity of the Red River Delta shows, as on the Southern Shelf, incised valleys cut into the Pleistocene land surface by paleo river channels. In this accommodation-dominated shelf area, the sedimentation rate is low with values of 5-10 cm/ky. Where applicable, we assigned the sampled deposits to different paleo-facies. The latter are related to certain intervals of water depths at their time of deposition. Comparison with the sea-level curve of (Hanebuth et al., 2000, doi:10.1126/science.288.5468.1033) indicates subsidence on the Central Shelf, which is in agreement with the high sedimentation rates in this area. In contrast, data from the Northern Shelf suggest tectonic uplift that might be related to recent tectonic movements along the Ailao Shan-Red River Fault zone. Data from the Southern Shelf are generally in agreement with the sea-level curve mentioned above.
Resumo:
As a result of both culture and sediment core studies, the ratio of germanium (Ge) to silicon (Si) in diatom shells has been proposed as a proxy for monitoring whole-ocean changes in seawater Ge/Si, a ratio affected by changes in continental weathering. However, because of the difficulties of extracting and cleaning diatom frustules from deep-sea sediments, only samples from highly pure diatom oozes in the Antarctic region have been previously analyzed. Here we present data on diatom Ge/Si ratios, (Ge/Si)opal, for the time interval between 3.1 and 1.9 Ma from a mid-latitude, coastal upwelling area where significant terrigenous sediment input complicated the sample processing and analyses. In general, our (Ge/Si)opal values show the same decreasing trend after 2.6 Ma than previously measured in Antarctic sediments (Shemesh et al., 1989. Paleoceanography 4, 221-231), but with a noisier background that may reflect the local imprint of proximal continental input superimposed upon global changes in the ocean reservoir. The time of initiation of large-scale North Hemisphere glaciation at ~2.6 Ma is characterized by a declining pattern of diatom Ge/Si ratios, which could have resulted from a global increase in the input of riverine Si due to enhanced silica weathering and/or equatorward (northward) intrusions of subantarctic waters enriched in silica. High (Ge/Si)opal ratios are associated with high opal contents from the same sediment samples and with warm climate as indicated by depleted benthic foraminiferal d18O values from the North and Equatorial Atlantic. Cold periods signified by enriched benthic d18O values, on the contrary, are associated with lower (Ge/Si)opal ratios. We interpret diatom Ge/Si values to reflect the prevailing weathering state on the continents, with greater chemical weathering during warm and wet periods of the Pliocene and less during cooler and drier intervals.
Resumo:
Neodymium isotopes are becoming widely used as a palaeoceanographic tool for reconstructing the source and flow direction of water masses. A new method using planktonic foraminifera which have not been chemically cleaned has proven to be a promising means of avoiding contamination of the deep ocean palaeoceanographic signal by detrital material. However, the exact mechanism by which the Nd isotope signal from bottom waters becomes associated with planktonic foraminifera, the spatial distribution of rare earth element (REE) concentrations within the shell, and the possible mobility of REE ions during changing redox conditions, have not been fully investigated. Here we present REE concentration and Nd isotope data from mixed species of planktonic foraminifera taken from plankton tows, sediment traps and a sediment core from the NW Atlantic. We used multiple geochemical techniques to evaluate how, where and when REEs become associated with planktonic foraminifera as they settle through the water column, reside at the surface and are buried in the sediment. Analyses of foraminifera shells from plankton tows and sediment traps between 200 and 2938 m water depth indicate that only ~20% of their associated Nd is biogenically incorporated into the calcite structure. The remaining 80% is associated with authigenic metal oxides and organic matter, which form in the water column, and remain extraneous to the carbonate structure. Remineralisation of these organic and authigenic phases releases ions back into solution and creates new binding sites, allowing the Nd isotope ratio to undergo partial equilibration with the ambient seawater, as the foraminifera fall through the water column. Analyses of fossil foraminifera shells from sediment cores show that their REE concentrations increase by up to 10-fold at the sediment-water interface, and acquire an isotopic signature of bottom water. Adsorption and complexation of REE3+ ions between the inner layers of calcite contributes significantly to elevated REE concentrations in foraminifera. The most likely source of REE ions at this stage of enrichment is from bottom waters and from the remineralisation of oxide phases which are in chemical equilibrium with the bottom waters. As planktonic foraminifera are buried below the sediment-water interface redox-sensitive ion concentrations are adjusted within the shells depending on the pore-water oxygen concentration. The concentration of ions which are passively redox sensitive, such as REE3+ ions, is also controlled to some extent by this process. We infer that (a) the Nd isotope signature of bottom water is preserved in planktonic foraminifera and (b) that it relies on the limited mobility of particle reactive REE3+ ions, aided in some environments by micron-scale precipitation of MnCO3. This study indicates that there may be sedimentary environments under which the bottom water Nd isotope signature is not preserved by planktonic foraminifera. Tests to validate other core sites must be carried out before downcore records can be used to interpret palaeoceanographic changes.
Resumo:
The variability in size and shape of shells of the polar planktonic foraminifer Neogloboquadrina pachyderma have been quantified in 33 recent surface sediment samples throughout the northern Atlantic Ocean and correlated with the properties of the ambient surface waters. The aim of the study was to determine whether any of the morphological features could be used to reconstruct sea surface properties in the polar realm of the North Atlantic, where most paleotemperature proxies appear to fail. The analyses revealed that shell morphology is only weakly controlled by habitat properties, whereas shell size showed a strong correlation with sea surface temperature. The regression of mean shell size on sea surface temperature revealed the presence of two trends among the sinistrally coiled shells: a continuous increase in shell size with decreasing SST in sediments deposited under polar water masses and a continuous increase in shell size with increasing SST in samples from transitional waters. The second trend mirrors the trend observed for dextrally coiled shells, which are frequent in the same samples and signal the presence of N. incompta. The identical mean shell size trends among the sinistral and dextral specimens in the temperate samples confirms the results of earlier genetic studies which indicated the existence of a small but distinct proportion of opposite coiling in N. incompta, to which the sinistral shells in the temperate samples could be attributed. The linear correlation between mean shell size and sea surface temperature in the polar domain (summer SST < 9 °C) has been used to develop an empirical formula for the reconstruction of past sea surface temperatures from shell sizes in fossil samples. The standard error of the residuals of the linear regression is 2.36 °C (1 sigma), which implies a much larger error than for most paleothermometers, but enough precision to allow resolution between results by individual paleothermometers in the polar domain. The resulting regression model has been applied on two sediment cores spanning the interval from the Last Glacial Maximum (LGM) to the present day. The results from core PS1906-1 are consistent with ice-free conditions during the LGM in the Norwegian Sea. The SST estimates for the LGM inferred from N. pachyderma shell size are similar or slightly higher than those for the latest Holocene. The results do not indicate anomalously high SST during the glacial and the LGM reconstructions thus appear more consistent with the results from foraminiferal transfer functions and geochemical proxies. Both sediment cores show the highest reconstructed SST during the early Holocene insolation optimum.
Resumo:
A depth transect of deep-sea bamboo corals along the California margin provides evidence that coral strontium to calcium ratios (Sr/Ca[coral]) record seawater Sr/Ca ratios (Sr/Ca[sw]). A calibration was constructed utilizing Sr/Ca[coral] ratios and previously published Pacific Sr/Ca[sw] data (R**2 = 0.53, n = 12, p < 0.01): Sr/Ca[coral] (mmol/mol) = 4.62*Sr/Ca[sw] (mmol/mol) - 36.64. Sr/Ca[sw] is ultimately governed by the remineralization of Sr-containing shells of surface water-derived marine organisms (e.g., Acantharia) at intermediate water depths. California margin Sr/Cacoral records from 792 and 1295 m document fluctuations in Sr/Ca[sw] that appear decadal-scale. These results suggest that Sr/Casw may not be as stable as previously assumed and may be influenced by surface productivity on short timescales.
Resumo:
The lithium content of planktonic foraminiferal calcite has been determined to evaluate temporal variability of seawater Li concentrations over the past 116 m.y. Mean foraminiferal calcite lithium/calcium in each time interval is no more than 16% greater nor 25% less than the mean Li/Ca of all samples. Li/Ca minima are observed for samples from 50-60 m.y. and 80-90 m.y., with Li/Ca about 25% lower than in adjacent time intervals. At no time during the past 40 m.y does mean Li/Ca appear to be higher than that at present. Subject to the limitations imposed by sample coverage and diagenesis, a similar conclusion holds for the past 116 m.y. Coupled with an oceanic mass balance model for Li, these data suggest that: (1) oceanic Li concentrations and, therefore, high-temperature hydrothermal circulation fluxes during the past 40 m.y. (and perhaps the past 100 m.y.) have not been more than perhaps 30-40% greater than at present for intervals any longer than a million years at most, and (2) these fluxes were not a factor of two higher 100 m.y. ago. By inference, variations in oceanic crustal generation rates over these time periods are similarly limited. Decreases in hydrothermal circulation fluxes and crustal generation rates or fluctuations up to 20% in these rates of a few million years duration are not necessarily ruled out by the Li/Ca data. The lack of variability in Li/Ca over time is not unequivocal evidence that hydrothermal fluxes have not varied because the rates of removal processes may be linked to changes in input fluxes.
Resumo:
The isotopic ratio of strontium-87 to strontium-86 shows no detectable variation in present-day ocean water but changes slowly over millions of years. The strontium contained in carbonate shells of marine organisms records the ratio of strontium-87 to strontium-86 of the oceans at the time that the shells form. Sedimentary rocks composed of accumulated fossil carbonate shells can be dated and correlated with the use of high precision measurements of the ratio of strontium-87 to strontium-86 with a resolution that is similar to that of other techniques used in age correlation. This method may prove valuable for many geological, paleontological, paleooceanographic, and geochemical problems.
Resumo:
A technique of zooplankton net sampling at night in the Kandalaksha and Dvinskii Bays and during the full tide in the Onezhskii Bay of the White Sea allowed us to obtain "clean" samples without considerable admixtures of terrigenous particulates. Absence of elements-indicators of the terrigenous particulates (Al, Ti, and Zr) in the EDX spectra allows to conclude that ash composition of tested samples is defined by constitutional elements comprising organic matter and integument (chitin, shells) of plankton organisms. A quantitative assessment of accumulation of ca. 40 chemical elements by zooplankton based on a complex of modern physical methods of analysis is presented. Values of the coefficient of the biological accumulation of the elements (Kb) calculated for organic matter and the enrichment factors (EF) relative to Clarke concentrations in shale are in general determined by mobility of the chemical elements in aqueous solution, which is confirmed by calculated chemical speciation of the elements in the inorganic subsystem of surface waters of Onezhskii Bay.