936 resultados para GEOSTROPHIC CURRENTS
Resumo:
We apply the master equation technique to calculate shot noise in a system composed of single level quantum dot attached to a normal metal lead and to a ferromagnetic lead (NM-QD-FM). It is known that this system operates as a spin-diode, giving unpolarized currents for forward bias and polarized current for reverse bias. This effect is observed when only one electron can tunnel at a time through the dot, due to the strong intradot Coulomb interaction. We find that the shot noise also presents a signature of this spin-diode effect, with a super-Poissonian shot noise for forward and a sub-Poissonian shot noise for reverse bias voltages. The shot noise thus can provide further experimental evidence of the spin-rectification in the NM-QD-FM geometry.
Resumo:
We show that the conductance of a quantum wire side-coupled to a quantum dot, with a gate potential favoring the formation of a dot magnetic moment, is a universal function of the temperature. Universality prevails even if the currents through the dot and the wire interfere. We apply this result to the experimental data of Sato et al. (Phys. Rev. Lett., 95 (2005) 066801). Copyright (C) EPLA, 2009
Resumo:
Phenomenological orbital-polarizition (OP) terms have been repeatedly introduced in the single-particle equations of spin-density-functional theory, in order to improve the description of orbital magnetic moments in systems containing transition metal ions. Here we show that these ad hoc corrections can be interpreted as approximations to the exchange-correlation vector potential A(xc) of current-density functional theory (CDFT). This connection provides additional information on both approaches: phenomenological OP terms are connected to first-principles theory, leading to a rationale for their empirical success and a reassessment of their limitations and the approximations made in their derivation. Conversely, the connection of OP terms with CDFT leads to a set of simple approximations to the CDFT potential A(xc), with a number of desirable features that are absent from electron-gas-based functionals. (C) 2008 Wiley Periodicals, Inc.
Resumo:
A large area in northeastern Marajo Island, northern Brazil, has been characterized geomorphologically, applying information acquired from Landsat imagery. This study was combined with detailed sedimentologic analysis of continuous cores, which provided a record of depositional settings developed in this area through the Holocene. The results revealed well-preserved, meandering to anastomosed drainage networks of wide palaeochannels that were superimposed by a narrower palaeochannel system. In both cases, the sedimentary record consists of sands, heterolithic deposits and muds, locally rich in plant debris. The strata are organized into fining upward successions that reach approximately 18 m thick in the wide channels and 4 m thick in the narrow channels. Sedimentary features suggestive of a coastal location for the wider palaeochannels and reworking of sediments by tidal currents include the prevalence of well to moderately sorted, rounded to sub-rounded, fine- to medium-grained sands displaying foreset packages separated by mud couplets, suggestive of tidal cycles. The data presented herein point to a rise in relative sea level reaching the Lake Arari area during the early to late/mid Holocene. This event was followed by a relative sea level drop. Tectonics seem to have contributed to an overall lowering in relative sea level in the study area since the mid-Holocene, which does not follow the same pattern recorded in other areas along the northern Brazilian coast.
Resumo:
We present a variable time step, fully adaptive in space, hybrid method for the accurate simulation of incompressible two-phase flows in the presence of surface tension in two dimensions. The method is based on the hybrid level set/front-tracking approach proposed in [H. D. Ceniceros and A. M. Roma, J. Comput. Phys., 205, 391400, 2005]. Geometric, interfacial quantities are computed from front-tracking via the immersed-boundary setting while the signed distance (level set) function, which is evaluated fast and to machine precision, is used as a fluid indicator. The surface tension force is obtained by employing the mixed Eulerian/Lagrangian representation introduced in [S. Shin, S. I. Abdel-Khalik, V. Daru and D. Juric, J. Comput. Phys., 203, 493-516, 2005] whose success for greatly reducing parasitic currents has been demonstrated. The use of our accurate fluid indicator together with effective Lagrangian marker control enhance this parasitic current reduction by several orders of magnitude. To resolve accurately and efficiently sharp gradients and salient flow features we employ dynamic, adaptive mesh refinements. This spatial adaption is used in concert with a dynamic control of the distribution of the Lagrangian nodes along the fluid interface and a variable time step, linearly implicit time integration scheme. We present numerical examples designed to test the capabilities and performance of the proposed approach as well as three applications: the long-time evolution of a fluid interface undergoing Rayleigh-Taylor instability, an example of bubble ascending dynamics, and a drop impacting on a free interface whose dynamics we compare with both existing numerical and experimental data.
Resumo:
Ion channels have been assigned a pivotal importance in various sperm functions and are therefore promising targets for contraceptive development. The lack of data on channel functionality and pharmacology has hampered this goal. This is a consequence of technical problems of applying electrophysiological techniques to spermatozoa due to their small size and form. By using a laminin coating to increase adherence of spermatozoa and nystatin in the patch pipette for pore formation, we have adapted the whole-cell recording technique to study currents in mature uncapacitated bovine spermatozoa. Employing these conditions, in the head region, patched spermatozoa could be transferred into the whole-cell configuration. For the first time we document an outward rectifying current in mature bovine spermatozoa was blocked by tetraethyl ammonium (TEA) chloride. The observation of a shift in the reversal potential as a response to changes in the extracellular concentration of K+ ions allowed us to identify this current as K+ selective. This result shows that K+ channels in the head region of mature uncapacitated bovine spermatozoa can be suitably investigated using the whole-cell recording patch-clamp technique.
Resumo:
Nicotinic acetylcholine receptors (nAChRs) were studied in detail in the past regarding their interaction with therapeutic and drug addiction related compounds. Using fast kinetic whole-cell recording, we have now studied effects of tacrine, an agent used clinically to treat Alzheimer`s disease, on currents elicited by activation of rat alpha(3)beta(4) nAChR heterologously expressed in KX alpha(3)beta(4)R2 cells. Characterization of receptor activation by nicotine used as agonist revealed a K(d) of 23 +/- 0.2 mu M and 4.3 +/- 1.3 for the channel opening equilibrium constant, Phi(-1). Experiments were performed to investigate whether tacrine is able to activate the alpha(3)beta(4) nAChR. Tacrine did not activate whole-cell currents in KX alpha(3)beta(4)R2 cells but inhibited receptor activity at submicromolar concentration. Dose response curves obtained with increasing agonist or inhibitor concentration revealed competitive inhibition of nAChRs by tacrine, with an apparent inhibition constant, K(I), of 0.8 mu M. The increase of Phi(-1) in the presence of tacrine suggests that the drug stabilizes a nonconducting open channel form of the receptor. Binding studies with TCP and MK-801 ruled out tacrine binding to common allosteric sites of the receptor. Our study suggests a novel mechanism for action of tacrine on nAChRs besides inhibition of acetylcholine esterase.
Resumo:
Nicotinic acetylcholine receptors (AChRs) are pentameric proteins that form agonist-gated cation channels through the plasma membrane. AChR agonists and antagonists are potential candidates for the treatment of neurodegenerative diseases. Cembranoids are naturally occurring diterpenoids that contain a 14-carbon ring. These diterpenoids interact with AChRs in complex ways: as irreversible inhibitors at the agonist sites, as noncompetitive inhibitors, or as positive modulators, but no cembranoid was ever shown to have agonistic activity on AChRs. The cembranoid eupalmerin acetate displays positive modulation of agonist-induced currents in the muscle-type AChR and in the related gamma-aminobutyric acid (GABA) type A receptor. Moreover, cembranoids display important biological effects, many of them mediated by nicotinic receptors. Cembranoids from tobacco are neuroprotective through a nicotinic anti-apoptotic mechanism preventing excitotoxic neuronal death which in part could result from anti-inflammatory properties of cembranoids. Moreover, tobacco cembranoids also have anti-inflammatory properties which could enhance their neuroprotective properties. Cembranoids from tobacco affect nicotine-related behavior: they increase the transient initial ataxia caused by first nicotine injection into naive rats and inhibit the expression of locomotor sensitization to repeated injections of nicotine. In addition, cembranoids are known to act as anti-tumor compounds. In conclusion, cembranoids provide a promising source of lead drugs for many clinical areas, including neuroprotection, smoking-cessation, and anti-cancer therapies. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Copper hexacyanoferrate nanoparticles of about 30 nm in size have been prepared by the sonochemical irradiation of a mixture of aqueous potassium ferricyanide and copper chloride solutions. The nanoparticles were immobilized onto fluorine doped tin oxide (FTO) electrodes by using the electrostatic deposition layer-by-layer technique (LbL), obtaining electroactive films with electrocatalytic properties towards H2O2 reduction, providing higher currents than those observed for electrodeposited bulk material, even in electrolytes containing NH4+, Na+ and K+. The nanoparticles assembly was used as mediator in a glucose biosensor by immobilizing glucose oxidase enzyme by both, cross-linking and LbL. techniques. Sensitivities obtained were dependent on the immobilization method ranging from 1.23 mu A mmol(-1) L cm(-2) for crosslinking to 0.47 mu A mmol(-1) L cm(-2) for LbL; these values being of the same order than those obtained with electrodes where the amount of enzyme used is much higher. Moreover, the linear concentration range where the biosensors can operate was 10 times higher for electrodes prepared with the LbL immobilization method than with the conventional crosslinking one. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Scanning electrochemical microscopy (SECM) in feedback mode was employed to characterise the reactivity and microscopic peculiarities of bismuth and bismuth/lead alloys plated onto gold disk substrates in 0.1 molL(-1) NaOH solutions. Methyl viologen was used as redox mediator, while a platinum microelectrode was employed as the SECM tip. The metal films were electrodeposited ex situ from NaOH solutions containing either bismuth ions only or both bismuth and lead ions. Approach curves and SECM images indicated that the metal films were conductive and locally reactive with oxygen to provide Bi(3+) and Pb(2+) ions. The occurrence of the latter chemical reactions was verified by local anodic stripping voltammetry (ASV) at the substrate solution interface by using a mercury-coated platinum SECM tip. The latter types of measurements allowed also verifying that lead was not uniformly distributed onto the bismuth film electrode substrate. These findings were confirmed by scanning electron microscopy images. The surface heterogeneity produced during the metal deposition process, however, did not affect the analytical performance of the bismuth coated gold electrode in anodic stripping voltammetry for the determination of lead in alkaline media, even in aerated aqueous solutions. Under the latter conditions, stripping peak currents proportional to lead concentration with a satisfactory reproducibility (within 5% RSD) were obtained.
Resumo:
The mechanism of eupalmerin acetate (EUAC) actions on the embryonic muscle nicotinic acetylcholine receptor (nAChR) in BC3H-1 cells was studied by using whole-cell and single-channel patch-clamp current measurements. With whole-cell currents, EUAC did not act as an agonist on this receptor. Coapplication of 30 mu M EUAC with 50 mu M, 100 N, or 500 mu M carbamoylcholine (CCh) reversibly inhibited the current amplitude, whereas, with 20 mu M CCh, current was increased above control values in the presence of EUAC. EUAC concentration curves (0.01-40 N) obtained with 100 mu M and 500 mu M CCh displayed slope coefficients, n(H), significantly smaller than one, suggesting that EUAC bound to several sites with widely differing affinities on the receptor molecule. The apparent rate of receptor desensitization in the presence of EUAC and CCh was either slower than or equal to that obtained with CCh alone. The major finding from single-channel studies was that EUAC did not affect single-channel conductance or the ability of CCh to interact with the receptor. Instead, EUAC acted by increasing the channel closing rate constant. The results are not consistent with the competitive model for EUAC inhibition, with the sequential open-channel block model, or with inhibition by increased desensitization. The data are best accounted for by a model in which EUAC acts by closed-channel block at low concentrations, by positive modulation at intermediate concentrations, and by negative allosteric modulation of the open channel at high concentrations. (c) 2007 Wiley-Liss, Inc.
Resumo:
Biological rhythms are regulated by homeostatic mechanisms that assure that physiological clocks function reliably independent of temperature changes in the environment. Temperature compensation, the independence of the oscillatory period on temperature, is known to play a central role in many biological rhythms, but it is rather rare in chemical oscillators. We study the influence of temperature on the oscillatory dynamics during the catalytic oxidation of formic acid on a polycrystalline platinum electrode. The experiments are performed at five temperatures from 5 to 25 degrees C, and the oscillations are studied under galvanostatic control. Under oscillatory conditions, only non-Arrhenius behavior is observed. Overcompensation with temperature coefficient (q(10), defined as the ratio between the rate constants at temperature T + 10 degrees C and at T) < I is found in most cases, except that temperature compensation with q(10) approximate to I predominates at high applied currents. The behavior of the period and the amplitude result from a complex interplay between temperature and applied current or, equivalently, the distance from thermodynamic equilibrium. High, positive apparent activation energies were obtained under voltammetric, nonoscillatory conditions, which implies that the non-Arrhenius behavior observed under oscillatory conditions results from the interplay among reaction steps rather than, from a weak temperature dependence of the individual steps.
Resumo:
Pt monolayers deposited on carbon- supported Ru and Rh nanoparticles were investigated as electrocatalysts for ethanol oxidation. Electronic features of the Pt monolayers were studied by in situ XANES (X-ray absorption near-edge structure). The electrochemical activity was investigated by cyclic voltammetry and cronoamperometric experiments. Spectroscopic and electrochemical results were compared to those obtained on carbon-supported Pt-Ru and Pt-Rh alloys, and Pt E-TEK. XAS results indicate a modification of the Pt 5d band due to geometric and electronic interactions with the Ru ant Rh substrates, but the effect of withdrawing electrons from Pt is less pronounced in relation to that for the corresponding alloys. Electrochemical stripping of adsorbed CO, which is one of the intermediates, and the currents for the oxidation of ethanol show faster kinetics on the Pt monolayer deposited on Ru nanoparticles, and an activity that exceeds that of conventional catalysts with much larger amounts of platinum. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Electrochemical systems are ideal working-horses for studying oscillatory dynamics. Experimentally obtained time series, however, are usually associated with a spontaneous drift in some uncontrollable parameter that triggers transitions among different oscillatory patterns, despite the fact that all controllable parameters are kept constant. Herein we present an empirical method to stabilize experimental potential time series. The method consists of applying a negative galvanodynamic sweep to compensate the spontaneous drift and was tested for the oscillatory electro-oxidation of methanol on platinum. For a wide range of applied currents, the base system presents spontaneous transitions from quasi-harmonic to mixed mode oscillations. Temporal patterns were stabilized by galvanodynamic sweeps at different rates. The procedure resulted in a considerable increase in the number of oscillatory cycles from 5 to 20 times, depending on the specific temporal pattern. The spontaneous drift has been associated with uncompensated oscillations, in which the coverage of some adsorbed species are not reestablished after one cycle; i.e., there is a net accumulation and/or depletion of adsorbed species during oscillations. We interpreted the rate of the galvanodynamic sweep in terms of the time scales of the poisoning processes that underlies the uncompensated oscillations and thus the spontaneous slow drift.
Resumo:
I explore the main currents of postwar American liberalism. One, sociological, emerged in response to the danger of mass movements. Articulated primarily by political sociologists and psychologists and ascendant from the mid-fifties till the mid-seventies, it heralded the "end of ideology." It emphasized stability, elitism, positive science and pluralism; it recast normatively sound politics as logrolling and hard bargaining. I argue that these normative features, attractive when considered in isolation, taken together led to a vicious ad hominem style in accounting for views outside the postwar consensus. It used pseudo-scientific literature in labeling populists, Progressives, Taft conservatives, Goldwaterites, the New Left and others "pathological," viz. mentally ill. Hence, "therapeutic discourse." I argue that philosophical liberalism, which reasserts the role of political theory in working out norms and adjudicating disagreement, is a more profitable way of thinking about and defending from critics liberalism. I take the philosopher John Rawls as the tradition's modern representative. This inquiry is important because the themes of sociological liberalism are making a comeback in American public discourse, and with them perhaps the baggage of therapeutic discourse. I present a cautionary tale.