916 resultados para GENOMIC DNA
Resumo:
The geographic and temporal origins of dogs remain controversial. We generated genetic sequences from 59 ancient dogs and a complete (28x) genome of a late Neolithic dog (dated to ~4800 calendar years before the present) from Ireland. Our analyses revealed a deep split separating modern East Asian and Western Eurasian dogs. Surprisingly, the date of this divergence (~14,000 to 6400 years ago) occurs commensurate with, or several millennia after, the first appearance of dogs in Europe and East Asia. Additional analyses of ancient and modern mitochondrial DNA revealed a sharp discontinuity in haplotype frequencies in Europe. Combined, these results suggest that dogs may have been domesticated independently in Eastern and Western Eurasia from distinct wolf populations. East Eurasian dogs were then possibly transported to Europe with people, where they partially replaced European Paleolithic dogs.
Resumo:
Archived specimens are highly valuable sources of DNA for retrospective genetic/genomic analysis. However, often limited effort has been made to evaluate and optimize extraction methods, which may be crucial for downstream applications. Here, we assessed and optimized the usefulness of abundant archived skeletal material from sharks as a source of DNA for temporal genomic studies. Six different methods for DNA extraction, encompassing two different commercial kits and three different protocols, were applied to material, so-called bio-swarf, from contemporary and archived jaws and vertebrae of tiger sharks (Galeocerdo cuvier). Protocols were compared for DNA yield and quality using a qPCR approach. For jaw swarf, all methods provided relatively high DNA yield and quality, while large differences in yield between protocols were observed for vertebrae. Similar results were obtained from samples of white shark (Carcharodon carcharias). Application of the optimized methods to 38 museum and private angler trophy specimens dating back to 1912 yielded sufficient DNA for downstream genomic analysis for 68% of the samples. No clear relationships between age of samples, DNA quality and quantity were observed, likely reflecting different preparation and storage methods for the trophies. Trial sequencing of DNA capture genomic libraries using 20 000 baits revealed that a significant proportion of captured sequences were derived from tiger sharks. This study demonstrates that archived shark jaws and vertebrae are potential high-yield sources of DNA for genomic-scale analysis. It also highlights that even for similar tissue types, a careful evaluation of extraction protocols can vastly improve DNA yield.
Resumo:
Transcription activator-like effectors (TALEs) are virulence factors, produced by the bacterial plant-pathogen Xanthomonas, that function as gene activators inside plant cells. Although the contribution of individual TALEs to infectivity has been shown, the specific roles of most TALEs, and the overall TALE diversity in Xanthomonas spp. is not known. TALEs possess a highly repetitive DNA-binding domain, which is notoriously difficult to sequence. Here, we describe an improved method for characterizing TALE genes by the use of PacBio sequencing. We present 'AnnoTALE', a suite of applications for the analysis and annotation of TALE genes from Xanthomonas genomes, and for grouping similar TALEs into classes. Based on these classes, we propose a unified nomenclature for Xanthomonas TALEs that reveals similarities pointing to related functionalities. This new classification enables us to compare related TALEs and to identify base substitutions responsible for the evolution of TALE specificities. © 2016, Nature Publishing Group. All rights reserved.
Resumo:
Replication of eukaryotic chromosomes initiates at multiple sites called replication origins. Replication origins are best understood in the budding yeast Saccharomyces cerevisiae, where several complementary studies have mapped their locations genome-wide. We have collated these datasets, taking account of the resolution of each study, to generate a single list of distinct origin sites. OriDB provides a web-based catalogue of these confirmed and predicted S.cerevisiae DNA replication origin sites. Each proposed or confirmed origin site appears as a record in OriDB, with each record comprising seven pages. These pages provide, in text and graphical formats, the following information: genomic location and chromosome context of the origin site; time of origin replication; DNA sequence of proposed or experimentally confirmed origin elements; free energy required to open the DNA duplex (stress-induced DNA duplex destabilization or SIDD); and phylogenetic conservation of sequence elements. In addition, OriDB encourages community submission of additional information for each origin site through a User Notes facility. Origin sites are linked to several external resources, including the Saccharomyces Genome Database (SGD) and relevant publications at PubMed. Finally, a Chromosome Viewer utility allows users to interactively generate graphical representations of DNA replication data genome-wide. OriDB is available at www.oridb.org.
Integrative genomic, epigenetic and metabolomic characterization of beef from grass-fed Angus steers
Resumo:
Beef constitutes a main component of the American diet and still represent the principal source of protein in many parts of the world. Currently, the meat market is experiencing an important transformation; consumers are increasingly switching from consuming traditional beef to grass-fed beef. People recognized products obtained from grass-fed animals as more natural and healthy. However, the true variations between these two production systems regarding various aspects remain unclear. This dissertation provides information from closely genetically related animals, in order to decrease confounding factors, to explain several confused divergences between grain-fed and grass-fed beef. First, we examined the growth curve, important economic traits and quality carcass characteristics over four consecutive years in grain-fed and grass-fed animals, generating valuable information for management decisions and economic evaluation for grass-fed cattle operations. Second, we performed the first integrated transcriptomic and metabolomic analysis in grass-fed beef, detecting alterations in glucose metabolism, divergences in free fatty acids and carnitine conjugated lipid levels, and altered β-oxidation. Results suggest that grass finished beef could possibly benefit consumer health from having lower total fat content and better lipid profile than grain-fed beef. Regarding animal welfare, grass-fed animals may experience less stress than grain-fed individuals as well. Finally, we contrasted the genome-wide DNA methylation of grass-fed beef against grain-fed beef using the methyl-CpG binding domain sequencing (MBD-Seq) method, identifying 60 differentially methylated regions (DMRs). Most of DMRs were located inside or upstream of genes and displayed increased levels of methylation in grass-fed individuals, implying a global DNA methylation increment in this group. Interestingly, chromosome 14, which has been associated with large effects on ADG, marbling, back fat, ribeye area and hot carcass weight in beef cattle, allocated the largest number of DMRs (12/60). The pathway analysis identified skeletal and muscular system as the preeminent physiological system and function, and recognized carbohydrates metabolism, lipid metabolism and tissue morphology among the highest ranked networks. Therefore, although we recognize some limitations and assume that additional examination is still required, this project provides the first integrative genomic, epigenetic and metabolomics characterization of beef produced under grass-fed regimen.
Resumo:
Mealybugs (Hemiptera: Pseudococcidae) are major pests of a wide range of crops and ornamental plants worldwide. Their high degree of morphological similarity makes them difficult to identify and limits their study and management. We aimed to identify a set of markers for the genetic characterization and identification of complexes of taxa in the Pseudococcidae. We surveyed and tested the genetic markers used in previous studies and then identified new markers for particularly relevant genomic regions for which no satisfactory markers were available. We tested all markers on a subset of four taxa distributed worldwide. Five markers were retained after this first screening: two regions of the mitochondrial cytochrome oxidase I gene, 28S-D2, the entire internal transcriber space 2 locus and the rpS15-16S region of the primary mealybug endosymbiont Tremblaya princeps. We then assessed the utility of these markers for the characterization and identification of 239 samples from 43 sites in France and Brazil. The five markers studied (i) successfully distinguished all species identified by morphological examination, (ii) disentangled complexes of species by revealing intraspecific genetic variation and identified a set of closely related taxa for which taxonomic status requires clarification through further studies, and (iii) facilitated the inference of phylogenetic relationships between the characterized taxa.
Resumo:
The tissue kallikreins are serine proteases encoded by highly conserved multigene families. The rodent kallikrein (KLK) families are particularly large, consisting of 13 26 genes clustered in one chromosomal locus. It has been recently recognised that the human KLK gene family is of a similar size (15 genes) with the identification of another 12 related genes (KLK4-KLK15) within and adjacent to the original human KLK locus (KLK1-3) on chromosome 19q13.4. The structural organisation and size of these new genes is similar to that of other KLK genes except for additional exons encoding 5 or 3 untranslated regions. Moreover, many of these genes have multiple mRNA transcripts, a trait not observed with rodent genes. Unlike all other kallikreins, the KLK4-KLK15 encoded proteases are less related (25–44%) and do not contain a conventional kallikrein loop. Clusters of genes exhibit high prostatic (KLK2-4, KLK15) or pancreatic (KLK6-13) expression, suggesting evolutionary conservation of elements conferring tissue specificity. These genes are also expressed, to varying degrees, in a wider range of tissues suggesting a functional involvement of these newer human kallikrein proteases in a diverse range of physiological processes.
Resumo:
Banana bunchy top is regarded as the most important viral disease of banana, causing significant yield losses worldwide. The disease is caused by Banana bunchy top virus (BBTV), which is a circular ssDNA virus belonging to the genus Babuvirus in the family Nanoviridae. There are currently few effective control strategies for this and other ssDNA viruses. “In Plant Activation” (InPAct) is a novel technology being developed at QUT for ssDNA virus-activated suicide gene expression. The technology exploits the rolling circle replication mechanism of ssDNA viruses and is based on a unique “split” gene design such that suicide gene expression is only activated in the presence of the viral Rep. This PhD project aimed to develop a BBTV-based InPAct system as a suicide gene strategy to control BBTV. The BBTV-based InPAct vector design requires a BBTV intergenic region (IR) to be embedded within an intron in the gene expression cassette. To ensure that the BBTV IR would not interfere with intron splicing, a TEST vector was initially generated that contained the entire BBTV IR embedded within an intron in a β-glucuronidase (GUS) expression vector. Transient GUS assays in banana embryogenic cell suspensions indicated that cryptic intron splice sites were present within the IR. Transcript analysis revealed two cryptic intron splice sites in the Domain III sequence of the CR-M within the IR. Removal of the CR-M from the TEST vector resulted in an enhancement of GUS expression suggesting that the cryptic intron splice sites had been removed. An InPAct GUS vector was subsequently generated that contained the modified BBTV IR, with the CR-M (minus Domain III) repositioned within the InPAct cassette. Using transient histochemical and fluorometric GUS assays in banana embryogenic cells, the InPAct GUS vector was shown to be activated in the presence of the BBTV Rep. However, the presence of both BBTV Rep and Clink was shown to have a deleterious effect on GUS expression suggesting that these proteins were cytotoxic at the levels expressed. Analysis of replication of the InPAct vectors by Southern hybridisation revealed low levels of InPAct cassette-based episomal DNA released from the vector through the nicking/ligation activity of BBTV Rep. However, Rep-mediated episomal replicons, indicative of rolling circle replication of the released circularised cassettes, were not observed. The inability of the InPAct cassette to be replicated was further investigated. To examine whether the absence of Domain III of the CR-M was responsible, a suite of modified BBTV-based InPAct GUS vectors was constructed that contained the CR-M with the inclusion of Domain III, the CR-M with the inclusion of Domain III and additional upstream IR sequence, or no CR-M. Analysis of replication by Southern hybridisation revealed that neither the presence of Domain III, nor the entire CR-M, had an effect on replication levels. Since the InPAct cassette was significantly larger than the native BBTV genomic components (approximately 1 kb), the effect of InPAct cassette size on replication was also investigated. A suite of size variant BBTV-based vectors was constructed that increased the size of a replication competent cassette to 1.1 kbp through to 2.1 kbp.. Analysis of replication by Southern hybridisation revealed that an increase in vector size above approximately 1.5 - 1.7 kbp resulted in a decrease in replication. Following the demonstration of Rep-mediated release, circularisation and expression from the InPAct GUS vector, an InPAct vector was generated in which the uidA reporter gene was replaced with the ribonuclease-encoding suicide gene, barnase. Initially, a TEST vector was generated to assess the cytotoxicity of Barnase on banana cells. Although transient assays revealed a Barnase-induced cytotoxic effect in banana cells, the expression levels were sub-optimal. An InPAct BARNASE vector was generated and tested for BBTV Rep-activated Barnase expression using transient assays in banana embryogenic cells. High levels of background expression from the InPAct BARNASE vector made it difficult to accurately assess Rep-activated Barnase expression. Analysis of replication by Southern hybridisation revealed low levels of InPAct cassette-based episomal DNA released from the vector but no Rep-mediated episomal replicons indicative of rolling circle replication of the released circularised cassettes were again observed. Despite the inability of the InPAct vectors to replicate to enable high level gene expression, the InPAct BARNASE vector was assessed in planta for BBTV Rep-mediated activation of Barnase expression. Eleven lines of transgenic InPAct BARNASE banana plants were generated by Agrobacterium-mediated transformation and were challenged with viruliferous Pentalonia nigronervosa. At least one clonal plant in each line developed bunchy top symptoms and infection was confirmed by PCR. No localised lesions were observed on any plants, nor was there any localised GUS expression in the one InPAct GUS line challenged with viruliferous aphids. The results presented in this thesis are the first study towards the development of a BBTV-based InPAct system as a Rep-activatable suicide gene expression system to control BBTV. Although further optimisation of the vectors is necessary, the preliminary results suggest that this approach has the potential to be an effective control strategy for BBTV. The use of iterons within the InPAct vectors that are recognised by Reps from different ssDNA plant viruses may provide a broad-spectrum resistance strategy against multiple ssDNA plant viruses. Further, this technology holds great promise as a platform technology for the molecular farming of high-value proteins in vitro or in vivo through expression of the ssDNA virus Rep protein.
Resumo:
Computational biology increasingly demands the sharing of sophisticated data and annotations between research groups. Web 2.0 style sharing and publication requires that biological systems be described in well-defined, yet flexible and extensible formats which enhance exchange and re-use. In contrast to many of the standards for exchange in the genomic sciences, descriptions of biological sequences show a great diversity in format and function, impeding the definition and exchange of sequence patterns. In this presentation, we introduce BioPatML, an XML-based pattern description language that supports a wide range of patterns and allows the construction of complex, hierarchically structured patterns and pattern libraries. BioPatML unifies the diversity of current pattern description languages and fills a gap in the set of XML-based description languages for biological systems. We discuss the structure and elements of the language, and demonstrate its advantages on a series of applications, showing lightweight integration between the BioPatML parser and search engine, and the SilverGene genome browser. We conclude by describing our site to enable large scale pattern sharing, and our efforts to seed this repository.
Resumo:
Ceramic membranes were fabricated by in situ synthesis of alumina nanofibres in the pores of an alumina support as a separation layer, and exhibited a high permeation selectivity for bovine serum albumin relative to bovine hemoglobin (over 60 times) and can effectively retain DNA molecules at high fluxes.
Resumo:
Synchronous fluorescence spectroscopy (SFS) was applied for the investigation of interactions of the antibiotic, tetracycline (TC), with DNA in the presence of aluminium ions (Al3+). The study was facilitated by the use of the Methylene Blue (MB) dye probe, and the interpretation of the spectral data with the aid of the chemometrics method, parallel factor analysis (PARAFAC). Three-way synchronous fluorescence analysis extracted the important optimum constant wavelength differences, Δλ, and showed that for the TC–Al3+–DNA, TC–Al3+ and MB dye systems, the associated Δλ values were different (Δλ = 80, 75 and 30 nm, respectively). Subsequent PARAFAC analysis demonstrated the extraction of the equilibrium concentration profiles for the TC–Al3+, TC–Al3+–DNA and MB probe systems. This information is unobtainable by conventional means of data interpretation. The results indicated that the MB dye interacted with the TC–Al3+–DNA surface complex, presumably via a reaction intermediate, TC–Al3+–DNA–MB, leading to the displacement of the TC–Al3+ by the incoming MB dye probe.